Tokamak Fusion Test Reactor

The Tokamak Fusion Test Reactor (TFTR) operated at the Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. TFTR set a number of world records, including a plasma temperature of 510 million degrees centigrade -- the highest ever produced in a laboratory, and well beyond the 100 million degrees required for commercial fusion. In addition to meeting its physics objectives, TFTR achieved all of its hardware design goals, thus making substantial contributions in many areas of fusion technology development.

In December, 1993, TFTR became the world's first magnetic fusion device to perform extensive experiments with plasmas composed of 50/50 deuterium/tritium -- the fuel mix required for practical fusion power production. Consequently, in 1994, TFTR produced a world-record 10.7 million watts of controlled fusion power, enough to meet the needs of more than 3,000 homes. These experiments also emphasized studies of behavior of alpha particles produced in the deuterium-tritium reactions. The extent to which the alpha particles pass their energy to the plasma is critical to the eventual attainment of sustained fusion.

In 1995, TFTR scientists explored a new fundamental mode of plasma confinement -- enhanced reversed shear. This new technique involves a magnetic-field configuration which substantially reduces plasma turbulence.