Live-Line and grounding “hot sticks” provide distance for electrical workers from potentially energized conductors while testing, trouble shooting, or conducting zero voltage checks. They are poles made of fiberglass-reinforced plastic (RFP) that have a universal mounting head for attaching various tools at one end and an end cap on the other. Most sticks at PPPL are filled with foam and reinforced with resin to create a moisture-resistant laminate with excellent electrical and mechanical properties.

Live-line tools must be removed from service every two years for examination, cleaning, repair, and testing per OSHA 1910.269. PPPL uses a local testing lab brought on site to conduct testing every year. We have 400 sticks in our inventory, 50 percent of which are tested each year. Testing ensures the sticks’ ability to insulate against a set high voltage. Testing is at 75kV per foot for one minute while wet to ensure maximum protection under less-than-ideal working weather.

Rubber insulating gloves are manufactured from natural rubber and, per OSHA 1910.137, must be electrically tested before they are first issued and every six months thereafter. PPPL sends our gloves out every six months to a local vendor for testing. At that time, the gloves are also cleaned for hygienic purposes and to remove contaminants that might reduce the glove’s useful life. Authorized employees are issued two sets of gloves to facilitate always having a fresh
pair. Class 2 gloves rated at 17 kVAC (thousand volts alternating current) are tested at 20 kVAC, while Class 0 gloves rated at 1 kVAC are tested at 5 kVAC.

When should rubber insulating gloves be inspected by the user?

- Rubber insulating gloves must be visually inspected before each day’s use and after any action that could cause damage to the glove.
- Look for signs of physical damage (punctures, cuts, nicks, cracks, scratches and abrasions), chemical deterioration (swelling, softness, hardening, or stickiness), ozone deteriorations, and other irregularities.
- Manually inflate the glove by rolling the cuff tightly to trap air inside then apply pressure to areas of the glove to listen for escaping air.
- Repeat procedure with glove turned inside out.
- Rubber gloves should always be used with leather protectors.
- Return damaged glove sets to Electrical Safety for replacement.

Questions can be directed to Glenn Anderson, electrical safety specialist, at ganderson@pppl.gov.

Do More (Safety) with Less Resources

By Bill Slavin

With the departure and retirement of personnel from the Lab, the need for enhanced attention to safety increases. This is especially true if the person who left had specific responsibilities for a safety-related function, such as being the responsible person for a chemical or flammable liquids cabinet, being the contact person for a lab or shop, or for performing equipment inspections. We must make sure that these duties do not lapse because the person has left. If you worked with someone who has departed and may have had these responsibilities, whoever takes on their responsibilities must take over this duty to ensure that the safe conditions continue. The Safety Division will be happy to help you navigate the task of getting people assigned to these new responsibilities or making sure they receive the training necessary to fulfill their new duties. In addition, if people have been assigned new duties, whether safety-related or not, be sure that those people have the knowledge and support they need to be successful in their new responsibilities. Lastly, we are aware of a known issue where a large number of our CLASP or Laboratory Posting signs are out of date due to key personnel leaving the Lab, especially in regard to the assigned building facility managers (FM) and the responsible line managers (RLMs). In this case, be sure that all of the area coordinator (AC) names further down on the sign are current and correct while PPPL implements a replacement for the current FM and RLM system.
Hand Tools are Underrated as Potential Hazards

By Julia Toth

Hand tools are non-powered tools that are used every day. From axes to scissors and everything in between, all hand tools can quickly become a safety hazard if not maintained, used, and stored properly. OSHA states that employers shall not permit the use of unsafe hand tools and the PPPL Safety Division endorses this policy.

Since hand tools are viewed as “simple to use” they become overlooked as a safety concern and may quite easily lead to injuries. Common hand tool injuries are cuts and abrasions, repetitive motion injuries, eye injuries, and broken bones. These are typically caused by misuse such as improvising with the wrong tools, using wrenches with sprung jaws that enable slippage, using impact tools (drift pins, wedges, and chisels) with mushrooming heads, using wooden handles that are not secured and splintered, and using dull knives and scissors. For additional information about the safe use of tools, see ESHD 5008 Section 9 Chapter 12.

Additionally, some tasks may require tools that you cannot purchase and specialty hand tools must be fabricated. These tools can be very useful, but we recommend that safety be a key focus of their design. Make sure there are no sharp edges, install a proper handle, or ask for an engineering design review to determine if the tool is strong enough for the task. Note that sometimes these specialty hand tools are created from existing tools that are pieced together and when this happens the manufacturer’s warranty becomes null because the integrity of the tool is lost.

Hand tools are underrated as potential hazard sources, but they can cause serious injuries. Remember the following:

• Always inspect tools before use.
• If a tool is broken, remove it from service.
• NEVER use a cheater bar, which can place excessive force on the tool.
• Never cut toward yourself.
• Use the right tool for the job.
• Wear personal protective equipment (PPE) if needed.
• Never leave tools lying around. Practice good housekeeping.

Inspect tools prior to use. Do not use if bent, mushroomed, or otherwise damaged.
MSW Trends Point to Improvements

By Dorothy Strauss

Management safety walk-throughs (MSWs) take place twice a month. Participants include management (both senior and area-specific), ES&H department personnel, and anyone else interested in participating. Action items are assigned by ES&H and tracked by the Planning Office. Andy Morrison, Best Practices Analyst, recently reviewed MSW findings over a three-year period. Highlights include:

• The most common issue found in 2017 was housekeeping. As a safety concern and a DOE notable outcome, everyone should be involved in maintaining a safe, clean, well-organized work environment.

• The next most common issue involved needed infrastructure repairs. Both of these items are trending up along with missing ceiling tiles. Missing ceiling tiles are a concern because smoke will rise above the drop-ceiling, causing a delay in smoke detection and alarm and sprinkler activation.

Several improvements were noted. Items that are trending down include:

• Missing labels/signs
• Flammable chemicals stored in squeeze bottles
• Faded signs
• Inappropriate storage of hazardous materials
• Untested electrical equipment

Despite increased participation in MSWs over the past 18 months, the average number of findings remains steady at approximately 17 per walk-through, although repeat findings declined in 2017. Repeat findings are the same issue found in the same location, which are noted and sent to area supervisors. Anyone interested in reviewing action items or trends within a specific area can do so by accessing the MSW portion of the QA database at https://fmp-srv.pppl.gov/fmi/webd.

Housekeeping Remains a DOE Contract Notable Outcome

By Dorothy Strauss

- Consider consolidating storage where possible.
- Ensure debris and garbage are placed in appropriate waste containers.
- Items should not be left on carts for extended periods.
- Pay attention to where equipment is situated.
- Work benches should be useable and not cluttered.
- Ensure ownership of areas/items is designated and known.

Areas noted by the DOE as needing improvement should be addressed in a timely manner (i.e., within 45 days of the inspection), with DOE re-inspection taking place within three months. The ES&H Department is coordinating clean-up efforts and will be in touch with responsible parties.
Dispose of Excess Personal Property Properly

By Rick Rainey

Staff members in the Property Office in Material Services are often asked how to properly dispose of excess personal property. Personal property is any equipment, material, or service provided to or acquired by PPPL that is funded by the Department of Energy or any federal agency. To start, the owner makes a detailed listing of the excess items with sufficient detail for classification of property type. Excess items that have a property number have all the information needed. For items without an asset tag, the item name, manufacturer information, model, and serial number are usually enough information. For PPPL-fabricated parts or equipment, the details will include noun name of the item, material, and usage. The Excess Property coordinator is required to identify any high-risk property and must answer the following:

- What is it?
- What is it used for?
- Where was it used?
- Is it on the commerce control list?
- Is it high risk?

The details given in the excess listing will help provide answers with a minimum of additional research.

When all of the details are collected, the owner must complete a Transfers & Excess Form. The form is on the Material Services website: (http://material-control.pppl.gov/TransferandExcessForm.pdf). The items can be listed directly on the form. The owner must determine the items’ condition. After the form is signed and dated, contact the Excess Property coordinator (x3326) or property administrator (x2567) to arrange transfer and delivery of the material to the warehouse or other suitable location. Deliveries to the warehouse or Receiving are not authorized unless coordinated with and approved by the Excess Property coordinator or other Material Services staff prior to delivery. Unauthorized deliveries will not be accepted. Any items that have hazardous materials must have the removal process in place or completed before transfer.

All Material Services Division staff can help with guidance in the disposition process. Acquisition and disposal of excess government property is covered in Procedure MC-004.

Contact Rick Rainey at extension 2724 or rrainey@pppl.gov with any questions regarding the procedure.

See Something, Say Something for Safety

By Julia Toth

This term applies to many things today and one of them is safety. There are often many warnings leading up to an incident and it is important for everyone to maintain vigilance in noticing them. Our STOP Program is a powerful tool that was adopted to assist in increasing safety awareness, but we have to use it in order for it to work. When you see a questionable act it is vital to say something in that moment to provide immediate intervention and minimize the chance of an incident occurring.

If something looks questionable, do not hesitate to have a conversation with the person performing the work. Research indicates that people speak up only 39 percent of the time when people see something
that is unsafe. This may be because they are nervous, intimidated, or try to rationalize why people are doing certain tasks. Be empowered and speak up! Simply asking workers questions may cause them to change the at-risk behavior. The next time you see a questionable act, have a conversation! It could stop an injury or save a life.

Strike up a conversation with a positive attitude and be polite but direct.

- “Hi. Can I talk to you about the work you are doing? I'm concerned that you may get injured if you continue to work.”
- “Can you help me? I noticed you working and was wondering what hazards your task entails?”
- “May I suggest the next time you (fill in the blank)...you try this (fill in the blank).”
- Remember: do not yell or scare a worker and do not tell them what to do. Ask questions!

Safety Culture Surveys Shed Light on STOP

By Dorothy Strauss

The Safety Culture Survey results from 2017 suggest that the methodology of the STOP program is not well understood and as a result the perception of the program’s value has declined. The vast majority of respondents recognize that STOP participation is not limited to supervisors...but what is it, exactly?

PURPOSE
The STOP program is a method for reducing injuries and illnesses by correcting unsafe behaviors and reinforcing positive practices.

HOW IS THIS ACCOMPLISHED?
Trained individuals observe workers while they are working and talk to them about what they see. If a worker is performing the task safely, the observer should comment specifically on what the worker is doing well. If the observer is concerned the worker is performing the task unsafely, the observer should ask why the worker is performing the task this way and the observer and the worker should come up with a safer method together.

THIS IS JUST TO GET PEOPLE IN TROUBLE, RIGHT?
No. There is no punitive element to the STOP program - ever.

SO IT’S A REPORTING MECHANISM.
No. STOP cards are useful for determining issues that need attention (e.g., multiple reports of misuse of ladders) but the program’s focus is on the conversation between the observer and the worker(s). Workers who are recognized for doing the right thing are likely to continue those behaviors. If a worker is putting himself, herself, or others at risk, then it’s necessary to change that behavior. Determining the root cause of the unsafe behavior allows barriers to safe work to be removed. For example, determining a worker is neglecting to wear a hardhat because her hardhat does not fit well is more valuable than instructing the worker to put on a hardhat.

Fully understanding the purpose and methodology of the STOP program along with active and consistent participation should increase the perceived value of the program.
Feedback on 2017 Safety Culture Surveys Welcome!

You can review the results of the 2017 safety culture surveys here. Feedback from the staff at large is welcome and encouraged!

We’ve Moved!

Safety and Environmental Services are now located on the second floor of the LSB East Wing Addition Annex. Please visit us in our new location for permits, JHA reviews, electrical glove change-outs, to arrange small group safety meetings, or to ask questions on PPE, safety procedures, etc. Oxygen monitors can be signed out from LSB Room B209.

New Safety Hotline!

A new way to report safety concerns, ideas, or suggestions is now available. Dial x2800 from any house phone to be connected with the entire Safety Division. If no one is available to take your call, a voice message will be emailed to the staff. This is not anonymous (the name associated with the extension or your cell phone number will be identifiable) and should not be used for emergencies. (Dial x3333 in-house or 609-243-3333 from a cell phone to report emergencies or conditions requiring immediate attention.) If you see something and want to report it on the spot or before you forget, you can now do so using x2800.
Plain-language policy interpretations. Find just what you need to know to get the job done.

http://safetywiki.pppl.wikispaces.net/

SAFETY DIVISION:
Industrial Hygiene, Lessons Learned, Confined Space
Permits: Neil Gerrish (x2531)
Industrial Safety, Ergonomic Evaluations, Fall Protection,
Noise: Julia Toth (x2832)

MATERIAL SERVICES DIVISION:
Offsite Shipments & Export Control: John Adams (x3572)
Receiving In-Bound Equipment, Materials & Supplies:
Margaret Carpe (x3568)
Mail & Package Distribution & Receiving: Jose Rodriguez
(x2328)
Furniture/Warehouse Services/Storage and Distribution &
Receiving: Pattie Potts (x2328)
Fleet Management/Dispatch and Mobile Equipment
Repairs: Adam Salmon (x2716)

ENVIRONMENTAL SERVICES DIVISION:
Spills should be reported to ESU at x3333
Spill Prevention: Rob Sheneman (x3392) or Mark Swanek
(x3391)
Hazardous Waste: Todd Sandt (x3592)
Radioactive Waste: Mark Hughes (x2296)

HEALTH PHYSICS DIVISION:
Nuclear Materials: George Ascione (x2513)
Dosimetry: Cathy Saville (x2528) or Sue Thiel (x2438)

GENERAL:
NEPA, MSWs: Dorothy Strauss (x3072) or Jerry Levine
(x3439)

Safety @ pppl.gov
Director’s Suggestion Box

Construction Safety: Ify Iwuoha (x3383)
Laser Safety, Scaffolding, Chemical and Safety Purchase
Approvals: Bill Slavin (x2533)
Electrical Safety: Glenn Anderson (x3740)

Office Supplies/Safety Shoes/Stockroom, Supplies &
Contracts, & Spares Operations: Marisol Ovalles (x2714) or
Lance Smith (x2363)
Property Administration/U.S. Gov't Personal Property
Tracking and Control: Bill White (x2567)
Excess Property Recycling & Disposal & Pick-ups: Kyron
Jones (x3326)
Property Loans and Collaborations (domestic and interna-
tional): Fran Cargill (x3396)

Recycling: Margaret King (x3652) (Scrap metal & electronics
are processed by Material Services.)
Environmental Permits & Green Purchasing: Leanna Sullivan
(x2746)

PEARL Operations: Patti Bruno (x3393)

Health Physics Technician Assistance: Patti Bruno (x3393)

Safety Culture Surveys: Dorothy Strauss (x3072)
Safety Analysis: Jerry Levine (x3439)

Safety Brochure –
Basic information for employees, contractors, and visitors.
Hazard Awareness Refresher

By Bill Slavin

FALLS / ELEVATED WORK: Employees must be protected from falling when they are walking or working on a walking/working surface with an unprotected side or edge that is six feet or more above a lower level in construction operations, or four feet or more above a lower level in all other operations. This can be accomplished with guardrails, full body harness and lanyard, or the use of man lifts (scissor or aerial lifts, see below). If a personal fall arrest system (full body harness and lanyard) are to be used, the anchor point needs to be verified by a competent person to make sure that it can hold the required weight of 5,000 pounds, minimum. The Safety Division should be contacted to review fall protection issues associated with an activity, especially when personal fall arrest is required. Fall protection for work on roofs requires review by the Safety Division.

LADDERS / SCAFFOLDS / MAN LIFTS: Be sure to use the right ladder (type and height) for the work. Stepladders must be used in the open and locked position and may not be leaned up against a structure. The ladder must be tall enough for you to safely reach the work, climbing no higher than the second step down on a stepladder or 4th rung from the top on a straight ladder. Scaffolds must be installed by trained personnel and must be inspected by a Lab competent person. The scaffolds must have complete floors and guardrails on all occupied levels. Man lifts, including both aerial (boom) lifts and scissor lifts, require classroom and practical, on-the-job training to use. Aerial lifts require personal fall arrest (harness and lanyard) to be worn and connected to the basket during use.

CRANES / RIGGING / FORKLIFTS: The use of forklifts, cranes, hoists and other lifting devices requires additional training offered through Human Resources. Only qualified personnel can use this equipment. Be aware that using this equipment will frequently cause other hazards to be present, such as foot hazards, vehicle exhaust fumes, falling objects, potential energy, and occasionally impairing of fire protection systems. If others are using this equipment in your work area, arrange for additional protection for the ground workers such as spotters, high visibility clothing, or barricades.

Internal Lessons Learned: Fall Protection Neglected Due to Short Duration of Work

By Neil Gerrish

Contractors were recently observed not complying with fall protection requirements while working at heights. If you are working at a height of 4 feet or greater here at the Lab, fall protection must be worn properly and secured to an approved anchor point.

One instance involved a contractor who was installing and testing notification wiring and was found to be in a boom lift not wearing appropriate fall protection even though it is always required for such lifts. The other observation involved a painter who was working on top of a stairwell roof outside established guardrails where there was a potential for falling. All work must be completed following proper procedures and working within the established controls—in this case...
guardrails—or fall protection is required. Work was momentarily paused so that fall protection could be implemented. In both cases we found that contractors were aware of the hazards and only needed to complete a small amount of work to comply, so complacency and convenience over safety were major factors in them not wearing the proper personal protective equipment (PPE).

HERE IS THE LESSON...
Often work can become routine regardless of the hazards. Workers who perform repetitive tasks can often go on autopilot and become complacent. Although training is important, the practice of safety is all about attitude and frame of mind. You can combat this by constantly focusing on your tasks or adding variety to your workday.

The second factor is convenience over safety. Oftentimes, the cause of accidents is not unsafe conditions but unsafe acts such as a worker making a decision to cut corners or thinking, “I don’t need my PPE. This will only take a minute.” In these two cases, both contractors involved said that it would take more time to get the proper equipment than it would to complete the work. It only takes a moment for an injury to occur. Sometimes it comes down to that single decision to choose the time-consuming right way over the easy wrong way. Training and regular discussions with workers (including regular STOP observations) will help reinforce the good decision-making process.

Remember that safety is a full-time job and that commitment to safety must be reinforced every day.

PPPL’er Reminds Us to Check Our Smoke Detectors

By Dorothy Strauss

We get reminders at least once a year to change our smoke detector batteries but periodically testing your detector can also be valuable. Kevin Lamb, an electronics technician in the Plant I&C Group, shared an account from home that illustrates the importance of making sure your smoke detectors actually work.

When Kevin’s family’s electric dryer stopped producing hot air, Kevin powered off the dryer overnight. When he investigated the next day, he found the power wire leading to the heater coil had completely melted off of the 240 Vac connector. The smoke detector in the basement did not alarm despite having a new battery. (None of the other smoke detectors in the house alarmed, either.) Kevin has since replaced all of the smoke detectors in his home. This is a reminder to check the smoke detectors in your own home. The National Fire Prevention Association (NFPA) recommends replacing smoke detectors every 10 years (from the date of manufacture, located on the back of the detector, not the date of installation). Working smoke detectors reduce your risk of dying in a home fire by half. Be sure you know how old your smoke detectors are and replace them as needed!
External Lessons Learned — Less than Adequate Oversight Resulted in a Student Receiving a Shock

By Jerry Levine (Based on DOE Lessons Learned Database)

SUMMARY:
When allowing students to perform tasks for the first time, continuous oversight is essential. Tasks that may be considered routine and mundane to experienced personnel may include steps that involve unanticipated hazards to those not familiar with these tasks.

DISCUSSION:
On July 25, 2017, an undergraduate student at another DOE Laboratory received an electrical shock while testing the voltage on a 300 volt direct current (VDC) battery used to power an ion chamber. While troubleshooting the ion chamber, it was decided that the battery voltage should be verified to eliminate it as a possible failure mode. After successfully testing the battery voltage using a digital voltmeter, the student attempted to remove the banana-style test connectors from the 300 VDC battery. The student used both hands to firmly grasp the banana test connectors. To gain a better grasp on the connectors because they did not easily pull out of the battery terminals, the student moved his/her fingers from both hands down the banana connectors towards the battery terminals to gain both a better grip and leverage.

As a result of the changed position on the connectors, the student’s fingers moved off the plastic body and insulated section of the banana connectors on the section of the banana test connector that transitioned from the insulating plastic of the plug to the exposed metal plug body. The student’s fingers contacted the partially exposed and energized banana connectors metal plugs as the connectors were still contacting the battery terminals. Exposure resulted in a shock to the student that caused tingling in both arms from the hands to the elbows. The student immediately released the terminals and jumped back from the testing equipment and battery.

ANALYSIS:
The student had a working understanding of electrical circuits. The student’s knowledge was based on experimental equipment and measurements, e.g., multi-meter use from college coursework, including practical laboratory use.

A student was shocked when unable to remove test conductors from a battery.

The student was unfamiliar with hazards of a 300 VDC battery and the potential risk/exposure when removing banana clips from the battery. Since the banana plugs were not easily removable from the battery, the student applied a technique using both hands to simultaneously pull out the banana plugs resulting in the electrical shock.

RECOMMENDED ACTIONS:
Actions were taken to identify and mitigate the hazard by eliminating the battery and using a power supply when possible.

Personnel familiar with the associated tasks and hazards of the work project and environment need to work closely with unacquainted or inexperienced personnel. Simple changes to a process can easily lead to potentially dangerous consequences.

Never assume that workers, especially students or others who are new to PPPL, know how to do a task safely. Take a look at the Safety Brochure for New Employees, Visitors & Contractors (http://www-local.pppl.gov/esh/New%20Employee%20Brochure%200816.pdf) and provide copies to all newcomers.
Shipping Account Use for Lab Business

By Rick Rainey

The use of PPPL shipping account numbers is restricted to official Laboratory business. When using UPS or Federal Express account numbers for inbound or outbound shipments, a shipping order (“Shipping Requisition On-line System” on the Lab home page) must be created as the source document to facilitate charge assignment and tracking. If the shipment is part of a purchase order, the purchase order number is used as a reference on the shipping order. Only by following this procedure will the Shipping Office receive notification of the shipment and impending charge. For questions regarding the shipping order system, contact John Adams (x3572) in the Shipping Office.

Review these Facts if You Wear a Dosimeter

By George Ascione

PURPOSE OF WEARING A RADIATION DOSIMETER
Federal Law (10CFR835) requires that occupational radiation workers be monitored for radiation exposure at PPPL. The laws are complex. However, the purpose of these requirements is to ensure that occupational exposure to radiation is accurately measured, recorded, and provided to dosimeter wearers. They apply to workers who enter a posted radiological area or perform radiological work, their supervisors, points of contact, line management, Radiation Protection and PPPL Site Security.

ENSURING ACCURATE DOSE READINGS
The purpose of a dosimeter is to measure a worker’s occupational exposure to radiation. The dosimeter must therefore be handled and worn correctly, must only be used by the person to whom it was issued, and must not be exposed to non-occupational sources of radiation.

RADIATION DOSIMETER PLACEMENT ON THE BODY
To ensure the dosimeter accurately records the whole-body radiation dose, the dosimeter must be placed on the front of your upper torso, between the neck and waist (never clipped onto a pants pocket, belt, or shirtsleeve). It must be facing outward, with no covering of any kind. It should be worn on the topmost layer of clothing. If wearing personal protective clothing, it should be worn on that layer, facing outward.

STORAGE WHEN NOT IN USE
The only time it is necessary to wear a dosimeter at PPPL is when you are entering a controlled area that specifically states “Dosimetry Required” on the radiological posting. The best place to store a dosimeter when not in use is on the dosimeter storage rack if one is provided in the local work area. Alternatively, storing it in the wearer’s on-site office prevents non-occupational radiation exposure such as that commonly encountered in medical facilities, airports, or off-site work places or laboratories with radiological equipment.

Note: It is not recommended that you store your dosimeter in a purse, wallet, or vehicle. Do not take it to a doctor’s office, pass it through any x-ray device such as those found at airports, or take it on an airplane. Do not wear a dosimeter after any medical treatment that involves radiation, such as a positron emission topography (PET) scan or technetium heart scan (nuclear stress test).

REPLACING A LOST, DAMAGED, OR COMPROMISED DOSIMETER
Dosimeters that are lost, damaged, or exposed to non-occupational or non-PPPL radiation must be declared as such by contacting the PPPL Health Physics Division. A new dosimeter will be issued. A compromised dosimeter is one that was exposed to a non-occupational or non-PPPL radiation source such as medical diagnostic procedure or treatments such as x-rays, dental x-rays or nuclear medicine. It also includes situations in which the dosimeter is exposed but the wearer is not, such as when a
dosimeter passes through a security device such as an x-ray machine at an airport.

The PPPL dosimetry program is a complex system meeting the latest DOE standards for occupational radiation exposures to PPPL workers. The information above is a simple reminder about the primary responsibilities of radiation workers and their use of radiation dosimetry. Please contact the Health Physics Division dosimetry office by calling Catherine Saville (x2528) or Sue Thiel (x2438) if you have any questions or concerns or wish to obtain more detailed information about PPPL’s personnel monitoring program.

Transition to ISO14001:2015

The International Organization for Standardization (ISO) issued a new version of its 14001 Standard on Environmental Management Systems in August 2015. Organizations like PPPL that are certified to the old (2004) version of ISO14001 must transition to the new requirements by the end of 2018. The global ISO14001 Standard outlines requirements that organizations commit to as part of the certification process. Among these requirements is to have an independent auditor review the system and its implementation against the Standard. A comprehensive certification audit is conducted every three years and is accompanied by smaller annual “maintenance” audits.

A team of four professional auditors from the global auditing firm DQS-UL completed PPPL’s certification transition audit during the week of Nov. 6-10, 2017. The audit was coordinated by ES&H Deputy Head and EMS Program Manager Rob Sheneman. Staff members from other ES&H organizations assisted as escorts for the audit team. The auditors met with senior Laboratory and University leadership, managers, supervisors, and employees. The team visited the entire PPPL campus and reviewed our policies, plans, procedures, and records.

The auditors identified five findings or “non-conformities” where PPPL’s existing programs/procedures need improvement to fully meet the Standard’s requirements. They also identified seven “opportunities for improvement” or recommendations, and identified eight “best practices.” The Laboratory has developed, and is implementing, corrective actions for the five non-conformities, which will be assessed during the next annual surveillance audit. Based on PPPL’s corrective actions, DQS-UL issued a new ISO-14001 Certificate on Jan. 4.

Successful completion of the EMS Transition Audit is a Notable Outcome for the Laboratory’s FY2018 Performance Management and Evaluation Program (PEMP) score card. Completion of the transition audit is a tribute to the Laboratory leadership, ES&H Department staff, and everyone at the Laboratory. Our sustainable practices and commitment to environmental protection have earned the Laboratory numerous awards in recent years and have also resulted in improved audit results. Additional information about PPPL’s Environmental Management System is available via a link on the Employee Services home page.

PPPL ES&H Newsletter