Proper Use of Portable Grinders Prevents Injuries

By Julia Toth

You must follow required safety guidelines when using a grinder in order to prevent injuries. If a grinder has a guard, you must use it. The guard should be positioned as shown at right, covering at least one-half of the wheel toward the user. This allows dust and particles to be deflected away from your face.

The guard does not have to be used if a cutting wheel is being used and it is less than two inches in diameter.

Always wear a face shield and safety glasses while grinding.

The speed of the grinding wheel is important because too slow a speed wastes the abrasive but excessive speed can cause a hard grinding action that could break the wheel. Never operate a grinding wheel above its maximum rated speed. The shrapnel can cause injury or death.

Note the position of the guard.

The best safeguard is to mount the wheel properly. Do not mount an oversized wheel. Wheels should fit freely on the spindle without excess play. Do not over-tighten the wheel because too much pressure can crack it.

Examine the grinding wheel for cracks and other defects before mounting it.
Rotate the wheel by hand through at least one full revolution to ensure the wheel is running true and is not rubbing at any point. Then spin test a new grinding wheel at operating speed for one minute while the operator and all other personnel stand to one side.

Use only the face of the grinding wheel unless the wheel is specifically designed for side grinding.

Always let the grinder reach full speed before applying it to the work and lift the grinder from the work before releasing the switch.

**Prevent Kickback**

- Maintain a firm grip on the grinder and position your body and arms to resist kickback forces.
- Use the side handle for additional control.
- Take special care when grinding corners and edges, which may snag the cutting wheel.
- Support the weight of your work piece to prevent it from snagging and pinching the cutting wheel.
- Use caution when making pocket cuts into walls or blind areas where the cutting wheel may cut into pipes or wiring.
- Don’t over-stress the wheel by applying excessive pressure or making deep cuts. This can twist or bind the wheel and increase kickback.
- If the cutting wheel begins to bind, turn off the grinder and determine what is causing the kickback.

STOP Program Notes Increase in ‘Convenience over Safety’ as Cause of Unsafe Behaviors

By Dorothy Strauss

“Convenience over safety” (doing what is easy over what is correct) has become even more dominant than usual among reasons given for unsafe behaviors, with 40 percent of people citing convenience as the reason for their unsafe behavior. A closer look at the details of conversations provided on related STOP cards suggests the main factor behind taking a shortcut is the expected short duration of the task or arrangement (e.g., obstructing an aisle). Lack of tools or personal protective equipment (PPE) is another factor, with workers using what is on hand or easily accessible rather than taking the time to secure the appropriate PPE. Both of these factors involve time. Supervisors should be sure that workers are cognizant that an unsafe condition of any duration is unacceptable and that they must take the time necessary to retrieve proper PPE, tools, etc.
# Electrical Inspections are Required in Certain Cases

By Glenn Anderson

Does your electrical equipment and/or installation need to be inspected? Chances are, it does.

<table>
<thead>
<tr>
<th>Type of Equipment or Installation</th>
<th>Inspection Required?</th>
<th>By Whom</th>
<th>Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>All electrical equipment and installations, additions, alterations, and repairs rated at ≥50 volts or ≥1,000 watts</td>
<td>Yes!</td>
<td>The PPPL Authority Having Jurisdiction (AHJ) (prior to</td>
<td>This equipment must be approved prior to use at PPPL or on PPPL-fabricated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>installation and/or use) and Glenn Anderson (Electrical</td>
<td>equipment for use at outside facilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safety Specialist)</td>
<td></td>
</tr>
<tr>
<td>NRTL-listed/labeled equipment using wall plug power</td>
<td>No!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTL-listed/-labeled equipment that has been altered or is used in ways not intended by the manufacturer</td>
<td>Yes!</td>
<td>PPPL AHJ and/or Glenn Anderson</td>
<td>Alterations or uses unintended by the manufacturer are no longer</td>
</tr>
<tr>
<td>NRTL-listed/-labeled equipment other than plug-in devices</td>
<td>Yes!</td>
<td>Glenn Anderson must inspect the installation. The</td>
<td>considered NRTL-approved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equipment itself must undergo the normal QC process per</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA-004.</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to [ENG-023](#) for more detail!

<table>
<thead>
<tr>
<th></th>
<th>Accepted</th>
<th>National Electric Code (NEC)</th>
<th>National Recognized Testing Laboratory (NRTL)</th>
<th>Authority Having Jurisdiction (AHJ)</th>
<th>Quality Control (QC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rejected</td>
<td>This component has been</td>
<td>This component has been inspected and found</td>
<td>This component is abandoned in</td>
<td>This component has</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inspected, approved, and is</td>
<td>to be out of compliance with codes, standards,</td>
<td>place or mothballed for future use</td>
<td>does not require</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in compliance with the National</td>
<td>or manufacturer’s instructions. A list will be</td>
<td>and does not require inspections</td>
<td>inspections until</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric Code, NFPA 70, and</td>
<td>provided of discrepancies for repair or</td>
<td>until reactivation.</td>
<td>activation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Standard for Electrical</td>
<td>replacement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safety in the Workplace,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFPA 70E and OSHA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Out of Service</td>
<td>This component is abandoned</td>
<td>This component is abandoned in place or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in place or mothballed for</td>
<td>mothballed for future use and does not</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>future use and does not</td>
<td>require inspections until reactivation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions regarding electrical inspections can be directed to [Glenn Anderson](#) at x3740.
Near Miss Prompts Safety Improvement

By Julia Toth

Roller stands are used throughout PPPL to assist in holding stock during machining operations. These roller stands are a great extra hand, but people who work with them have noticed that they may cause harm while someone is adjusting the height. If the locking lever is not fully tightened the weight of the roller will cause the height adjustment bar to unexpectedly drop, which could crush a user’s hand between the locking lever and the roller. This situation recently occurred with one of our machinists. He noticed this problem and, instead of allowing this issue to continue, he brought it to his supervisor’s attention. The problem was evaluated and rapidly fixed. They placed a spacer around the height adjustment bar so the roller stops at the spacer and does not hit the user if the locking lever is not fully tightened. This is a prime example of why it is beneficial to report near misses. It led to a simple solution being implemented to prevent a recurrence. Kudos to the employee for recognizing and reporting the problem and to the supervisor for taking immediate action!

A PPPL employee was nearly injured when the roller fell as he was adjusting the stand’s height.

A spacer was added that would prevent the roller from falling.
Get to Know the Safety Champions Committee

By Dorothy Strauss

The Safety Champions Committee is one of seven subcommittees that report to the ES&H Executive Board, the Lab’s safety ‘law-making’ body. This committee took the place of a single employee representative and serves as a conduit for safety concerns, ideas, and suggestions from the staff at large. If you have a safety issue or topic you would like to see brought to management, contacting a Safety Champions committee member is one resource you can use. Please talk with any of the current members:

- Marc Cohen, chair
- Gretchen Zimmer, vice chair
- Jerry Levine, safety champion (liaison to the ES&H Executive Board)
- George Ascione
- Neway Atnafu
- Stephen DePasquale
- Russell Feder
- Rick Horner
- Clayton Myers
- Leanna Sullivan

2016 Safety Culture Surveys Result in Action

By Dorothy Strauss

A total of 290 PPPL’ers responded to the 2016 safety culture surveys. The most notable calls to action included a need for increased communication about safety, clarifying the purpose and aim of the Safety Training Observation Program (STOP), and a lack of reporting of safety concerns and near misses. The Safety Review Committee and the Safety Champions Committee reviewed the survey results and recommended actions to the ES&H Executive Board. These actions were approved in November and will be implemented soon. Specifically, actions include:

**Improve Communication**
- Resurrect the Safety Forum.
  - The Safety Champions Committee will work with ES&H staff to develop a program.
  - A safety topic will be presented at each bimonthly supervisors meeting.
- Broadcast results of causal analyses, including actions.
  - The Office of Communications will lead this effort.
- Implement a 24-hour safety hotline.
  - ES&H staff will work with Facilities and Information Technology to consider a voicemail line or a voice-to-email system.

**STOP Program**
- This topic will be discussed at supervisors meetings.
- ES&H staff will work with the Office of Communications to increase awareness.
- Articles will appear in the ES&H Newsletter and the Weekly.
- The interim director and deputy directors will provide direction on making participation part of annual goals.

**Reporting**
- The interim director and deputy directors will include the importance of reporting events and conditions (even those with no injury/damage) in their messages to staff.
- This topic will be discussed at supervisors meetings.
Internal Lesson Learned: Impatience Leads to Propane Tank Fall

By Bill Slavin

Summary: On Oct. 3, 2017, a subcontract worker was in a rush to move a pickup truck owned by another company. The worker asked the owner to move the pickup truck, but the owner was in a discussion and offered to move it in five minutes. The worker, being impatient, decided to move the truck instead of the driver and jumped in the truck and started to pull forward. At that point, the front of a small flatbed trailer that was hitched to the truck knocked over a propane tank that had been placed on the ground between the truck and the trailer and wedged the tank underneath. The worker then tried to correct the mistake by taking a nearby forklift, also owned by another company, to lift the trailer off the tank. At that point, the owner of the vehicle immediately stopped work. ESU responded, evaluated the tank, and found it to be undamaged.

Lessons Learned:
1. Do not rush. Time pressure or a sense of urgency can lead to more mistakes, which are far more likely to make a job take significantly longer than if the tasks were planned and executed properly.
2. Walk around. When moving vehicles and equipment, especially those used by other people, walk around the equipment to ensure there are no obstacles or problems with the vehicle.
3. Do not set traps. Leaving equipment in locations where it might hamper or injure other people is a problem. In particular, do not leave equipment in walkways, near doors, or in places where it is difficult to see the equipment.
4. Plan the fix. When we make mistakes, we frequently hurry to fix them or cover them up. Often the rushed fixes can make things far worse. If the unexpected occurs, stop and take the time to determine the proper solutions. In this case, the rushed fix could have caused an explosion if the propane tank had been damaged. Remember that any “adverse” event, or abnormal or emergency condition must be reported to the ESU communications desk, which will then notify the on-duty facility manager to investigate.

Small Group Safety Meetings

11 different groups are holding small group safety meetings on a monthly or quarterly basis. Is your group one of them?

Your colleagues recently discussed a propane tank incident, grinder kickbacks, and the annual emergency exercise. Topics are proposed by the groups or suggested by Safety Division members.

Safety Division members are available to present the topic and facilitate discussion.

10-15 minutes is the average length of a small group safety meeting.

Neil Gerrish
Contact Neil to schedule a meeting for your group!
External Lessons Learned

By Jerry Levine (Based on DOE Lessons Learned Database)

A NEAR MISS OF A POSSIBLE OCCUPATIONAL INJURY: GLOVEBOX ON CASTERS TIPS OVER AND FALLS DURING RELOCATION ACTIVITIES

SUMMARY:
It is important to carefully evaluate every equipment move even if you have successfully moved the same or similar equipment in the past. Previous success can lead workers to incorrectly conclude that every hazard has been addressed. Past success does not guarantee that there will be no problems. For non-routine and complex equipment moves, subject matter experts should be consulted to evaluate the move, analyze hazards and plan the move. In some cases, the best choice may be using a hoisting/rigging crew to perform the move.

DISCUSSION:
A 9-foot-by-3-foot glovebox was being relocated on Feb. 27, 2017, at another DOE site. A few years earlier, the glovebox had been successfully moved to the existing location by placing it onto casters and rolling it along the floor. The current move was being performed under a standing Integrated Work Document (IWD) for Non-routine Equipment Moving. A forklift was used to lift the approximately 1,400-pound glovebox to place a caster under each of four legs. The workers ensured the path was free from obstacles and no other personnel were in the area. The two workers recognized that the glovebox was top heavy and therefore positioned themselves at each end to be out of the way if the load should begin to fall. The workers proceeded to slowly move the glovebox along a 30-foot path to a loading dock. The glovebox was successfully maneuvered over uneven floor and around a bumpy corner. At some point, one caster encountered a slight depression in the floor and it slid out from under the glovebox leg. The glovebox tipped to that side and fell over into a radiological-controlled area narrowly missing another glovebox and several pieces of equipment. The workers immediately paused work and notified their line management and a radiological control technician (RCT). The RCT surveyed the glovebox and the immediate area, finding no detectable activity. The division responsible for this move paused all equipment moves.

ANALYSIS:
On Tuesday, Feb. 28, 2017, the division leader (DL) convened a management meeting to discuss a path forward. The DL made the decision to limit the pause to non-routine lifts/moves to allow other routine work to continue. The IWD was modified to 1) provide guidance for non-routine equipment moves by considering other means of moving large heavy items safely, i.e., larger diameter casters with larger diameter wheels, securing the legs to the casters, or considering using a hoisting/rigging crew to move heavier items more than 1,000 pounds, and 2) to identify subject matter experts who will serve as persons-in-charge (PICs) to plan and oversee non-routine equipment moves. On March 14, 2017, the new Non-routine Equipment Moving IWD was issued and the DL lifted the pause on non-routine work.

Although there were no injuries or other serious consequences to this event, it did demonstrate the need for a strong questioning attitude. The workers involved did identify the glovebox falling as a possible hazard during the planning for the move and discussed ways to minimize the chances of it happening. However, they chose to complete the activity in the same way as previously accomplished without incident. This also demonstrated the need for an impartial subject matter expert (SME) to review the plan. Past success does not guarantee that there will not be any problems in the future.

External Lessons Learned:  
Trips and Falls Cause Injuries at Other Labs

By Neil Gerrish (Based on the ORPS Database)

The Department of Energy’s Office of Environment, Health, Safety and Security (EHSS) manages the Occurrence Reporting and Processing System (ORPS). This system provides timely notifications to the DOE complex of events that could adversely affect the public or DOE worker or contractor health and safety. Reports are submitted weekly and identify causes of accidents and injuries or near misses. Between January and September 2017, there were 19 reports in all the DOE national laboratories of workers injured due to trips and falls. Here are some examples:

At Lawrence Berkley National Laboratory, a worker fell off a ladder and sustained a hip fracture. The worker was attaching a blower device to a ceiling diffuser and was working alone at the time of the injury. He was using both hands to attach the blower and had one foot on the third rung and the other foot on the second rung of the ladder. The worker lost his balance and fell backwards to the floor landing on his hip. The accident investigation revealed that there were no lights on in the room where the worker fell and that it was not a regular work activity for the worker. The ladder was found to be stable and set up properly and had been inspected in the last 12 months. The worker had completed ladder safety training, but poor work techniques and a hazardous environment led to this injury.

Tip for PPPL’ers: Be mindful of your work practices. Sloppy execution can lead to injury. Workers performing new tasks should be supervised.

A student visiting Argonne National Laboratory suffered a fracture to her left leg. The student had just arrived and was on her way to a new employee orientation briefing. She tripped over a curb and fell while walking through the parking lot. The student was entering contact information into her cell phone at the time of the incident and did not see the curb.

Tip for PPPL’ers: Move to a safe area and stop to use your cell phone.

Recently, a team of professional first responders from Sandia National Laboratory were conducting emergency rescue training at a fire training tower when a team member fell through an opening covered with two layers of dense fire board sheeting. The sheeting was not strong enough to support the worker’s full body weight. The individual fell approximately eight feet to the floor below. This fall could have been avoided if workers had evaluated the area of the rescue activities in the tower and identified the opening.

Tip for PPPL’ers: Review workspaces for potential hazards before beginning a task.

Trips and falls are one of the leading causes of injuries in the workplace. Remaining vigilant and limiting distractions can help prevent such injuries. If area conditions (lighting, etc.) need improvement, please submit a work order. Inspect your tools and workspace before beginning work. The injuries noted here could have been prevented. Please do your part to protect yourself and speak up to protect others.

Control Hazardous Energy Sources

By Al von Halle

This is a reminder that our first line of defense at the Lab in protecting ourselves from sources of hazardous energy when working on systems or equipment is our lockout/tagout (LO/TO) program as described in procedure ESH-016. In the simplest terms, before working on equipment, all hazardous energy sources must be identified, isolated (de-energized), verified to be de-energized, and then locked and tagged in that safe condition until work is completed. It is critical that every person working on the equipment apply their own lock and tag to the overall LO/TO to ensure that all workers are clear before equipment is re-energized.
In cases of a more complex (group) LO/TO involving multiple energy sources, crews, or locations, as well as particular sequences or tasks that continue for multiple work periods, required steps for the LO/TO must be documented in a written plan of execution or procedure. ESH-016 describes the requirements for these LO/TO procedures, as well as the specifications for Lockout Devices, Locks and Tags.


Online training on ESH-016 is available as follows via our new Learning Management System:

1. Enter your Princeton University net ID and password to log into [http://www.princeton.edu/training](http://www.princeton.edu/training).
2. Click ‘Training by Department > PPPL’.
3. Click ‘eLearning’ from the departmental menu.
4. View training course list and click Lockout Tagout.

---

**Understand Barricade Tape Use**

By Dorothy Strauss

| If you **see** barricade tape | Red ‘danger’ tape indicates a hazard to people – do not cross!  
If you need access to the area or equipment, contact someone on the posted sign. (If there is no sign, contact the Safety Division.) |
| If you **use** barricade tape | Make sure there are no gaps in the taped off area so someone does not inadvertently enter a hazardous area.  
Place tape approximately 36” above grade and secure it so it does not sag or fall down.  
Red or yellow chain is also acceptable.  
You are required to post the names and contact information for at least two individuals.  
Remove the tape as soon as it is no longer needed. |

*For more information, see the SafetyWiki.*
Grad Students Introduced to PPPL Safety Methods

By Dorothy Strauss

PPPL’s incoming class of graduate students took part in the ES&H Department’s Graduate Student Safety Training seminar in September. They met with Richard Hawryluk, interim director, who spoke to the students about his own experiences as a graduate student and invited their input and ideas. Terrence Brog, deputy director for operations, and Michael Zarnstorff, deputy director for research, shared their perspectives on the importance of safety in work and research and stressed how safety must be a part of the planning and execution of all work practices at the Laboratory. Classroom sessions covered hazard awareness, environmental safety, security and emergency preparedness, project safety controls, integrated safety management (ISM), and personal protective equipment (PPE). Ray Camp, of the Power Systems Group, provided a tour of the National Spherical Torus Experiment-Upgrade (NSTX-U) control room and test cell, Mock-up Building, and NBPC area, and explained the many engineering, administrative, and PPE controls in place. Dennis Boyle, an associate research physicist, spotlighted the safety measures employed by the Lithium Tokamak Experiment (LTX), and Julia Toth, safety engineer, reviewed machine shop safety and training requirements in the S-109 student shop. These tours allowed the students to meet subject matter experts while getting a firsthand look at how safety is integrated into a variety of activities at the Laboratory.

First row (left to right): Eric Palmerduca (Colgate U.), Eduardo Rodriguez (University of Oxford)
Second row (left to right): Yichen Fu (Zhejiang U.), Alec Griffith (Harvey Mudd College), Sierra Jubin (Williams College), Nick McGreivy (U. of Pennsylvania), and Ben Israeli (Columbia U.)
Plain-language policy interpretations. Find just what you need to know to get the job done.

http://safetywiki.pppl.wikispaces.net/

SAFETY DIVISION:
Industrial Hygiene, Lessons Learned, Confined Space
Permits: Neil Gerrish (x2531)

MATERIAL SERVICES DIVISION:
Excess Property Recycling & Disposal & Pick-ups: Kyron Jones (x3326)
Offsite Shipments & Export Control: Jason Wohlberg (x3572)
Receiving In-Bound Equipment, Materials & Supplies: Margaret Carpe (x3568)
Mail & Package Distribution & Receiving: Jose Rodriguez (x2532)
Furniture/Warehouse Services/Storage and Distribution & Receiving: Pattie Potts (x2328)
Fleet Management/Dispatch and Mobile Equipment Repairs: Adam Salmon (x2716)

ENVIRONMENTAL SERVICES DIVISION:
Spills should be reported to ESU at x3333
Spill Prevention: Rob Sheneman (x3392) or Mark Swanek (x3391)
Hazardous/Chemical Waste: Rob Sheneman (x3392) or Mark Swanek (x3391)

HEALTH PHYSICS DIVISION:
Nuclear Materials: George Ascione (x2513)
Dosimetry: Cathy Saville (x2528)

GENERAL:
NEPA, MSWs: Dorothy Strauss (x3072) or Jerry Levine (x3439)

Report Safety Concerns, Questions, Ideas

Notify your supervisor (or HR if chain-of-command is a concern)

SOS Box – can be anonymous if you prefer.
If you include your name, we will respond to you directly as well as on the website.

Safety@pppl.gov
Director’s Suggestion Box

Industrial Safety, Ergonomic Evaluations, Fall Protection,
Noise: Julia Toth (x2832)
Construction Safety: Ify Iwuoha (x3383)

Office Supplies/Safety Shoes/Stockroom, Supplies & Contracts, & Spares Operations: Jim Conover (x3573) or Marisol Ovalles (x2714)
Property Administration/U.S. Government Personal Property Tracking and Control: Shanda Carmichael (x2567)
Property Loans and Collaborations (domestic and international): Fran Cargill (x3396)
Laser Safety, Scaffolding, Chemical and Safety Purchase Approvals: Bill Slavin (x2533)
Electrical Safety: Glenn Anderson (x3740)

Radioactive Waste: Keith Rule (x2329)
Recycling: Margaret King (x3652) (Scrap metal & electronics are processed by Material Services.)
Environmental Permits: Virginia Finley (x2746)
Green Purchasing: Leanna Sullivan (x2599)

PEARL Operations: Patti Bruno (x3393)
Health Physics Technician Assistance: Patti Bruno (x3393)

Safety Culture Surveys: Dorothy Strauss (x3072)
Safety Analysis: Jerry Levine (x3439)

Safety Brochure – Basic information for employees, contractors, and visitors.
Hazard Awareness Refresher

By Bill Slavin

Part four of our review of hazards to consider while completing the JHA form.

NOISE:
High noise can damage hearing, and long exposures can cause the damage to become permanent. Anything that produces sound levels over 85 decibels (dBA) must be controlled. A rule of thumb test to determine if an area, process, or tool is too noisy is that you must raise your voice to be understood three feet away. Most permanently noisy areas are posted. Most tools are not. Examples of tools that may produce dangerous levels of noise include: shop vacuums, leaf blowers, impact tools, compressors, grinders, and lawn mowers. If there is a question regarding the noise levels or if you are planning to do work that you suspect will generate high noise, contact Safety for monitoring and recommendations before starting. Note that people exposed to high noise may be required to be enrolled in PPPL’s Hearing Conservation Program, which includes training and annual audiograms (hearing tests).

SHARP OBJECTS/TOOLS:
The obvious hazard from sharp objects is the risk of being cut. Consideration should also be paid to possible equipment damage. You must be careful while using knives, saws, chisels, etc. Never cut towards your hand or body. Utilize cut-resistant gloves to avoid being cut by a slipping tool if the surface is uneven or the circumstances are awkward. Sharp objects should be padded or protected when possible to prevent the worker or other personnel from accidental contact with the sharp edge. Store sharp materials and tools in a way that prevents accidental contact with the edges or points. Dispose of razor or knife blades in sharps containers, available from the stockroom, or by wrapping them in tape to prevent other people from being cut by them.

WORKING SURFACES / TRIPPING HAZARDS:
Walking surfaces and any platforms where people are working must be kept clear of clutter. Surfaces that have non-removable tripping hazards require additional preventative measures such as covering the hazard with a walkway, taping electrical cords to the surface, posting signs, roping off of areas, or merely using added caution. Watch for holes in floors or weak spots in structures that may fail under the weight of a person walking. A structural engineer must inspect all platforms built at PPPL to be sure the platforms are sturdy enough for the intended purpose. Slippery surfaces caused by ice or water must be handled immediately to prevent serious injuries. Contact Facilities if assistance is needed. Use spill-resistant cups when carrying drinks and clean up any spills you create or find.
The U.S. Department of Energy requires purchasing environmentally preferred products (EPP) to promote federal environmental stewardship. These acquisition practices are critical for sustainability efforts to decrease energy, water and waste use, meet federal reduction goals and support PPPL’s Environmental Management System (EMS).

Please consider these easy steps prior to purchasing & procuring items at PPPL:

**Step 1:** Identify your item category requirement for sustainable attributes: [Sustainable Facility Tool (SFTool.gov)]

**Step 2:** Click ‘Where to buy’ under Product Details, which incorporate the following federally mandated environmental program requirements: [https://sftool.gov/learn/about/371/environmental-programs](https://sftool.gov/learn/about/371/environmental-programs)

**Who:** ALL PPPL employees are responsible for purchasing federally-designated environmentally preferred products.

**What:** ALL PPPL purchases (office, electronics, operations & renovations, etc.) via PCard, requisition & SOW should include environmentally preferable products (EPP) where feasible, as required per DOE guidance. Be sure to check ‘Ensuring Sustainable Products’ for requisition & PCard purchases.

**Where:** Use [SF Tool & PPPL’s ESD Site](https://pppl.princeton.edu/PPPL_Environmentally_Preferable_Purchasing) to navigate EPP sustainable requirements.

**When:** Each time you make a purchase with your PCard, requisition & SOW.

**Why:** The federal goal requires 95% of new contract action items meet EPP requirements. EPP is required per Executive Orders 13693, and the FAR contract clause.

Contact Environmental Services with Questions at x2599 or Lsullivan@pppl.gov or PPPL’s EPP webpage: [https://pppl.princeton.edu/PPPL_Environmentally_Preferable_Purchasing](https://pppl.princeton.edu/PPPL_Environmentally_Preferable_Purchasing)