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Outline

 Data Grand Challenges

— Data challenges of simulation-based science

* Rethinking the simulations -> insights pipeline
 The ADIOS/DataSpaces Project

« Conclusion
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Modern Science & Society Transformed by

Compute & Data ), I G

B

-l

New paradigms and practices
in science and engineering =4

* Inherently multi- ' N ' | E § )
disciplinary - - _
e Data-driven, data and The End

compute-intensive
e Collaborative (university,
national, global)

of Science

Many Challenges
« Computing, Data, Software,
People
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Many Challenges.... -]

Computlng

Multicore; large and increasing core counts, deep memory
hierarchies (TH-2: 54.9 PF, 3.12 M Cores, 1.4 PB, 25 MW)

- New prgm. model, concerns (fault tolerance, energy, etc)

- New models & technologies: Clouds, grids, hybrid
manycore, accelerators, deep storage hierarchies, ...

Data

- Generatlng more data than in all of human history: preserve
mine, share? :

- How do we create “data scientists/engineers™?

Software

- Complex applications on coupled compute-data-networked
environments, tools needed

— Modern apps: 10%+ lines, many groups contribute, take SOFTWAR

decades to develop, very long lifetimes CRISIS
People SOLUTIONS

— Multidisciplinary expertise essential!
- Appropriate academic program, career tracks...
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The Era of eScience and Big Data

Clearly, modern scientific network/
instruments/experiments/... are
producing Big Data!!

Bytes per day

But what about HPC?

2012 2020

Credit: R. Pennington/A. Blatecky
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Advanced Computing Infrastructure

« Large scale, distributed, heterogeneous, multicore/manycore,
accelerators, deep storage hierarchies, experimental systems

TH-2 T g
* 549PF/3.12Mcores & gt = % « £| Computing Grid
* 32K Xeon + 48K Phi B TRF N

* TH Express-2
* 1PB memory

Titan - Cray XK7

20+ PF/300KCPU
cores

* 18,688 GPUs

* Gemini 3D torus

 710TB memory

Sequoia - IBM BG/Q
e 20PF/1.5M cores
* 18-core processor
* 5D torus

* 1.5PB memory

« ~250k cores;
=% - ~100PB disk

Modern
Datacenters

e 1M servers
e 50-100 MW

Special Purpose

HW (Anton)

* >100time
acceleration of
MD
simulations
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Scientific Discovery through Simulations

Scientific simulations running on high-end computing systems generate
huge amounts of datal

— If a single core produces 2MB/minute on average, one of these machines could
generate simulation data between ~170TB per hour -> ~700PB per day ->
~1.4EB per year

Successful scientific discovery depends on a comprehensive understanding
of this enormous simulation data

How we enable the computation scientists to
efficiently manage and explore extreme scale data:
“find the needles in haystack” ??
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Scientific Discovery through Simulations

Molecular Simulation Plasma Fusion Astrophysics Combustion Climate Modeling
» Complex workflows integrating * Complex, heterogeneous
coupled models, data management/ components

processing, analytics

» Tight/loose coupling, data
driven, ensembles » Data re-distribution (MxNxP), data

transformations

* Large data volumes and data rates

* Advanced numerical methods (E.g., . D o d H
Adaptive Mesh Refinement) ynamic data exchange patterns
» Strict performance/overhead

* Integrated (online) uncertainty constraints

quantification, analytics
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Traditional Simulation -> Insight Pipelines Break Down

Simulation
Machines

Simulation Raﬁ Data

Storage
Servers

-

N~

-

N~

Simulation Raw Data 8

Analysi/Visulization
Clusters

Figure. Traditional data analysis pipeline

Traditional simulation -> insight

pipeline:

— Run large-scale simulation
workflows on large supercomputers

— Dump data on parallel disk systems
— Export data to archives

— Move data to users’ sites — usually

selected subsets

Perform data manipulations and
analysis on mid-size clusters

Collect experimental / observational
data

Move to analysis sites

Perform comparison of
experimental/observational to
validate simulation data
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Challenges Faced by Traditional HPC Data Pipelines

Data analysis challenge

« Can current data mining, manipulation
and visualization algorithms still work
effectively on extreme scale machine?

I/O challenge

* Increasing performance gap: disks are
outpaced by computing speed

Data movement challenge

Storage
Servers

Simulation Raﬁ Data

Simulation
Machines

Analysi/Visulization
Clusters

=
I &=

Simulation Raw Data 8

Figure. Traditional data analysis pipeline

« Lots of data movement between simulation and analysis machines, between
coupled mutli-physics simulation components -> longer latencies

* Improving data locality is critical: do work where the data resides!

Energy challenge

« Future extreme systems are designed to have low-power chips — however,
much greater power consumption will be due to memory and data movement!

The costs of data movement are increasing and dominating!
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The Cost of Data Movement

 Moving data between node  The energy cost of moving data is a
memory and persistent significant concern
storage is slow!

performance |
FLOPs will cost less than
- ~on-chip data movement! -
Access Latency (s) / gap 10000 - P
- 10° /Cache
O / 1000
Cc -8 c
Q 10 Local Memory %
'E; 107 2100
- GPU Memory P ==2008 (45nm)
o)) fé =#-2018 (11nm)
(- 10° Remote Memory & 10
%] / %
© o
2 10° = |
SSDs and NVRAM
= <<\’0Q i ¢ &8 S8 &8 Q—‘§\ ezé &
C N <&° &oo é\oo @O(\ ] Q\O @0(\ ,;o*{"
-— & & &
N 10'1 System Wide Persistent Storage A
AN /
. 2
bitrate * length

Energy_move _data = - -
cross_section_area_of_wire

From K. Yelick, “Software and Algorithms for Exascale: Ten Ways to Waste an Exascale Computer”
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Challenges Faced by Traditional HPC Data Pipelines

The costs of data movement
(power and performance) are
increasing and dominating!

Simulation
Machines

Traditional data analysis pipeline

Storage
Servers

Simulation Raﬁ Data @

Iy &=

Analysi/Visulization
Clusters

Simulation Raw Data 8

We need to Rethink the Data Management Pipeline!

— Reduce data movement

— Move computation/analytics closer to the data

— Add value to simulation data along the 1O path
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Rethinking the Data Management Pipeline — Hybrid Staging
+ In-Situ & In-Transit Execution

Issues/Challenges

* Programming abstractions/systems

Computi

wnnine ® Mapping and scheduling
I

 Control and data flow

RV CVEGRVE-L

Simula e Autonomic runtime
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Design space of possible workflow architectures

. Analysis Tasks

Location of the compute resources
— Same cores as the simulation (in situ)
— Some (dedicated) cores on the same nodes
— Some dedicated nodes on the same machine
— Dedicated nodes on an external resource

Data access, placement, and persistence
— Direct access to simulation data structures
— Shared memory access via hand-off / copy

— Shared memory access via non-volatile near
node storage (NVRAM)

— Data transfer to dedicated nodes or external
resources

Synchronization and scheduling

— Execute synchronously with simulation
every nth simulation time step

— Execute asynchronously

Simulation

Visualization

Node 1
p

rBEEE
==

Sharing cores with the simulation

B EE
r-mm

Using distinct cores on same node|

A
HEEE

Simulation Node

Network Communication

 EEER
DR

Staging Node
Processing data on remote nodes

Node N

Node 2

~

(o)

Staging option 1
- |

,4 'ERA: M/Staging option 2

/

-~ -

TRAM~ ~
= -

=~ VRAM” |

Staging option 3

\
\\\\\

-

/( —Hard Disk j

NURAMS ~ | -

> g

[ //§D/ J J

[ “Ssb—~ |

(

Hard Disk )

J

Network




RUTGERS DataSpaces
In-situ/ln-transit Data Management & Analytics

(e .

2
| Shared-space Programming Abstraction for Coordiantion and Interaction Control Plane |1 @, O
| QO -
| — _ —) 1, g o
| Hybrid Staging Abstraction Data-centr.|c . (\ﬂ
| . Task Mapping | g )
| | In-memory Associative Object Store || Dynamic Code Deployment LA 'ﬁ_’r
I | M 9
: Cross-layer w un
| o
| Dynamic Overlay Layer <:\ Y - : 2 -g
| DART Communication Layer | Q 8
| y

& (Cray Gemini, Cray Portals, Infiniband, IBM DCMF, TCP/IP)

. Virtual shared-space programming abstraction
. Simple API for coordination, interaction and messaging
. Distributed, associative, in-memory object store
« Online data indexing, flexible querying
. Adaptive cross-layer runtime management
« Hybrid in-situ/in-transit execution
. Efficient, high-throughput/low-latency asynchronous data transport
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DataSpaces: A Scalable Shared Space Abstraction for Hybrid
Data Staging [HPDC10, JCC12]

« Virtual shared-space abstraction J: Data object

« Simple API for coordination, m: Meta-data object
interaction and messaging Simulation

. Provides a global-view programming
abstraction consistent with PGAS

. Distributed, associative, in-deep-
memory object store

« Online data indexing, flexible

Appl

querying Shared Space Model
App2 App3
. Adaptive cross-layer runtime
management « Dynamic coordination and interaction
. Hybrid in-situ/in-transit execution patterns between the coupled
applications

+  Data-centric mappings — Transparent data redistribution

« High-throughput/low-latency memory-to- — Complex geometry-based queries

memory asynchronous data transport — In-space (online) data |
transformation and manipulations
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DataSpaces: Scalability on ORNL Titan

2GB 4GB 8GB 16GB 32GB 64GB 128GB 256GB 2GB 4GB 8GB 16GB 32GB 64GB 128GB 256GB
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241 100 | ’
2.0 @ 28 i s
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1.0 _g 40 /A
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Evaluate weak scaling with an increasing number of processors

Applications redistribute data through DataSpaces
«  Application 1 runs on M processors and insert data in the space
- Application 2 runs on N processors and retrieve data from the space

Result: A 128 fold increase in the application sizes from 512 to 64K writers, total data
size exchanged per step is increased from 2GB to 256GB



RUTGERS DataSpaces: Enabling Coupled Scientific
L= . Workflows at Extreme Sc

XpressSpace Management Server

data XpressSpace Boolstrap
bl T Thread 4 e e Thread N Ke | CPS File Parsin
data DataSpaces S i
XGCo0 o P M3D-OMP Simulation Code 1 NS DIMES library
kinetic code > q quilibrium solve XpressSpace Programming APIs Networks
.\ XpressSpace Runtime System
DIMES library Data
O Networks
space : :
server Simulation Code 1 Simulation Code 2
Q UPC UPC UPC
data d?;a Dat Thread0 Thread1 """ Thread M
obiee ald Simulation Code 2
diagnistic — ELITE XpressSpace Programming APls
visualization A check-ELM XpressSpace Runtime System
DIMES library
Networks

Multphysics Code Coupling at Extreme Scales [CCGrid10]
PGAS Extensions for Code Coupling [CCPE13]

compute nodes running

simulation and in-situ analytics |Simulation data_kernels.o |
'—It' 0x69 0x20 O0x61 Eem——*
f A u analytics Ox6d O0x20 0Ox63
|S|mU|at|0n ART y Ox6f Ox6f Ox6C
[Simulation e 0x0 Link
Simulation " R " gcc | data_kernels.lua
Ics ‘9(‘(9\/~ data_kernels.c RERE forfi =0, Bi-l'dlod
o . - ' or j =0, nj-1 do
in-situ analytics g, kernel_min { : for k=0, nk-1 do
DART o, for i = 1_ n | val = input:get_val(i,j,k)
e,){ forj=1,m ! if min > val then
forfk(= 1,p ( 9 IComdpute min = val
if (min > A(i, j, 1 nodes ! end
Resoure ) min =A@, , k)| "TTTTTogT\ T end
Pool of computation bucket scheduler end
i ; Data {
in the staging area ‘e'b& Data Interaction
C@’V and coordnation
] ‘\\009(\‘ Q . X
. ] N N~ Runtime execution syste
E nl - eé@‘?@@% DataSpaces (Rexec)
inf T ) ) OGS O O
E in-transit analytics 95\g3§e6 O
¥ .
OART @ Staging

Data-centric Mappings for In-Situ Workflows [IPDPS12]  Dynamic Code Deployment In-Staging [IPDPS11]
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In-Situ Feature Extraction and Tracking using
Decentralized Online Clustering (DISC’12, ICAC’10)

= | DOC workers executed in-situ on
EnEiss SN unllnn imul n machin
el e simulatio achines

R
DT ™~
mm nm DOC Overlay

| r_l

x| |
| e
.00 0 d o d d o ddag

Simulation Compute Nodes

‘ Processor core runs simulation

‘ Processor core runs DOC worker

Benefits of runtime feature extraction and tracking . . . .

(1) Scientists can follow the events of interest (or data of One compute node
interest)

1837 A 2337
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AMR-as-a-Service using DataSpaces
+ FEM-AMR workflow

f \ Grid Grid
EEM GridField GridField
DataSpaces
pGrid pGrid
k j pGridField pGridField

« Components:
* FEM: model uniform 3D mesh of near-realistic engineering problems such

as heat-transfer, fluid flow and phase transformation(Grid and GridField)
 AMR: localize areas of interest where the physics is important (pGrid and

« pGridField) to allow truly realistic simulations

+ Goals:
« Enable in-memory data coupling between FEM and AMR code

« Allow multiple AMR codes to be plugged in and read Grid/GridField data as
FEM progresses.
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Overview of Research Work @ RU

Programming abstractions / system

DataSpaces: Interaction, coordination and messaging abstractions for coupled scientific
workflow [HPDC10, CCGrid10, HiPC12, JCC12]

XpressSpaces: PGAS extensions for coupling using DataSpaces [CCGrid11, CCPE13]
ActiveSpaces: Dynamic code deployment for in-staging data processing [IPDPS11]

Runtime mechanisms

Data-centric Task Mapping: Reduce data movement and increase intra-node data sharing
[IPDPS12, DISC12]

In-situ & In-transit Data Analytics: Simulation-time analysis of large volume data by
combining in-situ and in-transit execution [SC12, DISC12]

Cross-layer Adaptation: Adaptive cross-layer approach for dynamic data management in
large scale simulation-analysis workflow [SC13]

Value-based Data Indexing and Querying : Use FastBit to build in-situ, in-memory value-
based indexing and query support in the staging area

Power/performance Tradeoffs: Characterizing power/performance tradeoffs for data-
intensive simulations workflows [SC13]

Data Staging over Deep Memory Hierarchy: Build distributed associative object store over
hierarchical memory storage, e.g. DRAM/NVRAM/SSD [HIPC 13]

High-throughput/low-latency asynchronous data transport

DART: Network independent transport library for high speed asynchronous data extraction
and transfer [HPDCO08]
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Integrating In-Situ and In-Transit Analytics (SC’12)

X CENTER FOR EXASCALE SIMULATION
OF COMBUSTION IN TURBULENGCE

Di-methy Ether Lifted ethylene/air

« S3D: First-principles direct A oty fomes )
. . . ) (Heel) (2012) -3 billion gri
numerical simulation pglig ' e

e Simulation resolves features on
the order of 10 simulation time
steps

« Currently on the order of every o
400t time step can be written to Eﬁifogi%gg)
d i S k Fl)(:::ltlso nénd Eiz?:iithi%?VsigéTB) Premixed hydrogen/air turbulent

1.7 billion grid points flames (2011) 7 billion grid points

« Temporal fidelity is compromised

o Recent data sets generated by S3D, developed
when analysis is done as a post-  at the Combustion Research Facility, Sandia
process National Laboratories
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In-situ Topological Analysis as Part of S3D*

Mp.7 =Mp 5 +Mp 7,

B2t 2]t
+ (nlnﬂﬁz.l)p Lgl__l - (T:)p_l].

Combustion

|dentify features of

TaRgREY interest

*). C. Bennett et al., “Combining In-Situ and In-Transit Processing to Enable Extreme-Scale Scientific
Analysis”, SC'12, Salt Lake City, Utah, November, 2012.

X CENTER FOR EXASCALE SIMULATION
OF COMBUSTION IN TURBULENGCE

61
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Integrating In-Situ and In-Transit Analytics
(SC’12)

primary resources

B S3D Min-situ Mdata movement ®Min-transit

in-situ statistics 10.0%
hybrid statistics 10.1%

in-situ visualization 43%

secondary resources
computationga| steeri
n

Simulation In-transit
staging

area

bucket AXtask & data
ready descriptors

:gircetiiasta z SChT:wztler hybrid visualization ﬂ .04%
st hybrid topology 280 2.06 161%
simulation
* Primary resources execute o 2 4 6 8 10 12 14 16
the main simulation and in seconds

situ computations

« Secondary resources
provide a staging area
whose cores act as
buckets for in transit
computations

» 4896 cores total (4480 simulation/in situ; 256 in
transit; 160 task scheduling/data movement)

* Simulation size: 1600x1372x430

e All measurements are per simulation time step
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Simulation case study with S3D: Timing results
for 4896 cores and analysis every 10t
simulation time step

BmS3D Min-situ Mdata movement ¥ in-transit

in-situ statistics i 1.0%

hybrid statistics 1.0%

in-situ visualization 43%

hybrid visualization .004%
hybrid topology

simulation

0 20 40 60 80 100 120 140 160
seconds
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Simulation case study with S3D: Timing results
for 4896 cores and analysis every 100t
simulation time step

e
]

BS3D Min-situ Mdata movement & in-transit
in-situ statistics | 1%
hybrid statistics | 1%
in-situ visualization | .04%

hybrid visualization | .004%

hybrid topology 16%

simulation

0 200 400 600 800 1000 1200 1400 1600
seconds




Cross-Layer Adaptation for Dynamic Data Management

RUTGERS

Coupled simulation-analytics
workflow based on dynamic
formulations such as
Adaptive Mesh Refinement
(AMR) running at extreme
scales present new
challenges for in-situ/in-
transit data management

« Large and dynamically
changing volume of data

« Dynamic imbalanced data
distribution

« Heterogeneous resource
(memory, CPU, etc.)
requirements

Peak

360

340 +

320+

300 |

280

260

240

220

(SC13)

360
340
320
300
280
260
240
220

Memory(MB)

g

50

100

150

20 i
CPU Rank Time Step

200 10

250 0
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Cross-Layer Adaptation for Dynamic Data
Management

Dynamic cross-layer adaptations
that can respond at runtime to the
dynamic data managementand ~ iEessessem5

User's preferences  User's hints Spatial-temporal

|
|
data processing requirements Application Layer [ [ ' Data Resolution
. . . e o R -
« Application layer: Adaptive | A e=rface ! N
spatial-temporal data resolution | S
_ o Adaptation Engine [ Analviics =
« Middleware layer: Dynamic in- widdeware Layer L e i 5
situ/in-transit placement and | 2
scheduling o = 2
« Resource layer: Dynamic Resource Layer | Intransit
. . . |
allocation of in-transit resources L Resources |

I

« Coordinated approaches:
Combine mechanisms towards a
specific objective (e.g. minimized
time-to-solution)

sindinQO uoneildepy
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Memory Size (MB)

Cross-Layer Adaptation for Dynamic Data
Management

200 T T T T T T
Memory Consumption with MIN data spatial resolution -+
Memory Consumption with MAX data spatial resolution -
180 | Memory Consumption with Adaptive data spatial resolution ---%----
Real-time Memory Availability
160 -
140
120
100
80
60
40 | gt
R
" A_**_*_*_**+ \
20 B K- 3¢-36-% X
" I s ol \
- -3
0 f'+'+'+'+'T'""'+'+"+'T"+'+'+“+'T"+-+.+“*"+-+--+-+-+--+-+--+-+-+--+-+--|---+—+---|--+-+--+-?|-<
0 5 10 15 20 25 30 35 40

Time step

Application layer adaptation of the
spatial resolution of data using user-
defined down-sampling based on
runtime memory availability.

Application layer adaptation of the
spatial resolution of the data using
entropy based data down-sampling.

(Top: full-resolution; Bottom:
adaptive resolution)
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Cross-Layer Adaptation for Dynamic Data

~ 1400 T T T T
@ Intransit placement 1400 ' - S
Y : Local adaptation
o Adaptive placement s - Global adagtation —
= m
c @
© 8]
= 2
g 1000 | £ 1000
¢
& g
§ 800f 2 800
£ =
2 E
2 600f g 6ol ]
£ £
5 8
L T
o 400 8 400 | |
o) >
5 g
m —
o o
® 200 o 200 |
G &
(0]
N
L e W
2K 4K 8K 16K 2K 4K 8K 16K

_ _ AMR simulation cores
AMR simulation cores

Amount of data transfer using static placement, adaptive placement and
combined adaption (adaptive data resolution + adaptive placement)
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Cross-Layer Adaptation for Dynamic Data

~ 1400 . . T .
8 Intransit placement 4500 [ End-to-end Simulation Time === '
~ Adaptive placement m— End-to-end Overhead
)
o 1200 |
0 4000 -
C
g 0
= °
s 1000 5
T S 3500
M 4]
i o

+ €
§ 800 *; 3000
Z S
35 3
= 600 - % 2500 |- - - —
£ °
9 &
) S
g 400 | T 2000 I
(0] =
) i H N -
g 200 + 1500 |
: I
0
N
0 - 1000
? 0 hsiy, /"T’ans'jf’apt hsiy, /"rfan:},dam

2K 4K 8K 16K
2K AMR cores 4K AMR cores

AMR simulation cores
a. Data transfer with/without middleware
adaptation at different scales

Adapt the placement on-the-fly, utilizing the

flexibility of in-situ (less data movement).

Ing;, I
"Sity "rfangdapt

8K AMR cores

s,
"Sity "rapggept

16K AMR cores

b. Comparison of cumulative end-to-end
execution time between static placement
(in-situ/in-transit) and adaptive
placement. End-to-end overhead includes
data processing time, data transfer time,
and other system overhead.
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Size of aggregated insitu-intransit data transfers (GB)

1400

1200

1000 |

800 r

600 r-

400 r

200 r

Cross-Layer Adaptation for Dynamic Data
Management

" Local adaptation ;
Global adaptation s

4K 8K 16K

AMR simulation cores

2K

a. Data transfer comparison between

performing adaptive placement and
performing combined cross-layer
adaption (adaptive data resolution +
adaptive placement)

End-to-end execution time (Seconds)

4500 -

4000

3500 -

3000 -

2500

2000

1500

1000

Endl-to-end ]Simulation Timé
End-to-end Overhead s
-
B
N
Adap[ G/Oba/ 4dap[ G/()ba/ 4dap[ G/Oba/ 4dapt G/obe/

2K AMR cores 4K AMR cores 8K AMR cores 16K AMR cores

b. Comparison of cumulative end-to-

end execution time between
adaptive placement and combined
cross-layer adaption (adaptive data
resolution + adaptive placement).
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Scalable In-Memory Data Indexing and Querying for
Scientific Simulation Workflows

Motivation

* Query-driven data analysis is an important technique for analyzing the
enormous amounts of data produced by large-scale scientific simulations

— Flame front tracking in combustion simulations: scientists need to formulate a set of
queries to discover the data points whose values lie within a certain range

Problems of traditional file-based approach

» Parallel I/O operations become the dominating cost factor, and introduces
significant overhead to both index building and query processing

* Only data from selected steps is written for post-processing, thus some
highly intermittent and transient phenomena could be lost

Goal

« Enable parallel in-memory indexing and querying to support online
query-driven data analysis for large scale scientific simulations
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Scalable In-Memory Data Indexing and Querying for
Scientific Simulation Workflows

Highlight

Parallel in-memory indexing
and querying on dedicated
staging nodes

Scalable and efficient online
indexing/query performance

Support SQL-like query syntax
and simple querying APIs

Flexible framework that can be
integrated with different index
techniques (current
Implementation uses FastBit —
compressed bitmap index)

Clients
S3D codes
arl
var 2 Servers
O%‘% var 3 ﬁ
oY
(] -
00 O
Index Buildilﬁg

C
| Yy 9 O Query F:mgﬁsing

= N
0
W g
GTS codes |53 i

Figure. Conceptual overview of the

Clients

SELECT wvarl
FROM S3D
WHERE varl=100

SELECT AVG(var2)
FROM 532D

WHERE va3=<=24

SELECT sumlvarz2)
FROM GTS
WHERE varl = 2.5

SELECT wvarl
FROM GTS
WHERE varl=100
AND var2 < 5

AND var3 = 1.99

presented

framework, and interaction between scientific

simulations and querying applications
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Scalable In-Memory Data Indexing and Querying for
Scientific Simulation Workflows

Performance comparison with file-based approach
* 1/O overhead is the dominating cost for file-based approach

« DataSpaces approach is significantly faster for both index building and
querying

Corlnpu{elndex —I I 45 In Memc;ry ——
500 F ReadData - File-based
WriteData 40
Writelndex
35
400 r
30
. 300 » 25
@
— £
20
200 r
15
100 | N 1 or
0 —-7_7—7_7 b, b b 0 : : : — —
/77)7(;;% be /7\,77é//% be /77776/;% bas Osméi% be,s /7~,77é£% 66@ 128 256 512 1024 2048
o,fed O/_]/SGO' (I Or, S/ 0ry, € Data Size(MB)
128MB 256MB 512MB 1GB 2GB

Figure. (Left) Breakdown of index building time; (Right) Query processing time
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Time(s)

Scalable In-Memory Data Indexing and Querying for
Scientific Simulation Workflows

Performance with increasing number of cores

*Increase the number of index/query servers from 32 to 1k

*The index building time reduces from 30.7s to 2.1s for 128GB data set.
*The query processing time decreases significantly for different selectivities.

35 . v L In merrllorly qluery con%pl;tatlion —
Data Size: 2GB —e— Data transfer
Data Size: 16GB 0.6 +
30 & Data Size: 128GB v | ’
0.5 F
25 +
. 04 F
20 + :
15 | . 3T
0.2 +
10 F )
T
0.1
54 S
| - 0 _ _ )
—  a
0 : . - ekl CRAs  CRAe R ORAs OB
512/64 1k/128 2k/256 4K/512 8k/1k ‘g%ﬁ 0?%%{ 02%9'{ 02%%'“ d?%/" 0?%%{
Number of cores Number of cores

256/32 512/64 1k/128 2k/256 4k/512 8k/1k
Figure. (Left) Index building time for different data size; (Right) Breakdown of query
processing time for different query selectivities
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Scalable In-Memory Data Indexing and Querying for
Scientific Simulation Workflows

Scaling Performance

*Increase both the total data size and number of index/query servers
*Qur approach shows overall good scalability for both index building and
guery processing
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01 % \ & L 2 &
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512/64 1k/128 2k/256 4k/512 8k/1k 16k/2k 512/64 1k/128 2k/256 4k/512 8k/1k 16k/2k
Number of cores Number of cores

Figure. (Left) Index building time; (Right) Query processing time
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Data Staging over Deep Memory Hierarchy

Motivation

« Given small DRAM capacity per core, even aggregated memory on
dedicated nodes will not be sufficient for staging data

Hybrid Staging

Primary resources @ Simulation cores

« Spans horizontally across
the memory of compute

@ Data staging and processing cores

|
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« Spans vertically across the ! Q-0000 O 00 |[fue
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EPSI @ Rutgers -- Objective

« Enable tightly coupled XGC1 and XGCa workflow using hybrid
staging -- XGC1 and XGCa processes on the same compute
node, and exchange data through on-node memory

— Explore two different execution model

« Concurrent coupling: execute XGC1 and XGCa concurrently on different set
of processor cores of each compute node

« Sequential coupling: execute XGC1 and XGCa sequentially on the same set

of processor cores of each compute node .'
O xGcc1 @ XGCa '
a processor core O O O O O O
I/I O O O O O O __'

_L;
000000 .
000000\ 000000

,\ multi-core com . . . . . . in

pute node | !

lllustration of tightly coupled execution of XGC1 and XGCa: (Left) ~ 1imeline
concurrent coupling; (Right) sequential coupling
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EPSI XGC1-XGCa Coupled Workflow

* Preliminary evaluation results on ORNL Titan
— File-based: ADIOS/BP method, Memory-based: ADIOS/DataSpaces

XGC1: turbulence writing
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XGCa: turbulence reading

File-based Memory-based

Comparison between file-based and memory-based coupling. (Left) XGC1 turbulence
writing; (Right) XGCa turbulence reading. Note: Y-axis is total wallclock time (seconds),
which is the accumulated sum over all processes and all time steps.
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Summary & Conclusions

« Complex applications running on high-end systems generate extreme
amounts of data that must be managed and analyzed to get insights
— Data costs (performance, latency, energy) are quickly dominating
— Traditional data management/analytics pipelines are breaking down

« Hybrid data staging, In-situ workflow execution, & Dynamic code
deployment can address this challenges

— Users to efficiently intertwine applications, libraries, middleware for complex
analytics

« Many challenges; Programming, mapping and scheduling, control and
data flow, autonomic runtime management....

 The ADIOS/DataSpaces project explores solutions at various levels:

— High-level programming abstractions for in-situ / in-transit workflows for code
coupling, online analytics, UQ, etc.

— Efficient adaptive runtime mechanisms for hybrid staging, locality-aware
mapping and location-aware data movement, performance/energy tradeoffs

— Support for dynamic code deployment and execution for moving code to data
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