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Earthquakes far out in the ocean gener-
ate massive water waves called tsunami.
When such waves hit coastlines they can
cause massive damage.
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The 2004 Indian Ocean Tsunami: 100’ waves. 230,000 deaths.

(photo by David Rydevik)
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The 2011 Tōhoku Tsunami: 130’ waves. 15,000 deaths + Nuclear

accidents. (photo from National Geographic)
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The 2011 Tōhoku Tsunami: 130’ waves. 15,000 deaths + Nuclear

accidents. (photo from National Geographic)
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Tsunami behavior

The waves which leave from the quake zone:

1. are NOT very high, around five feet;

2. are extremely wide, around one hundred miles;

3. move very fast, order of 500 mph;

4. go long distances, like halfway around the world, and

do not “disperse” as they travel.
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Tsunami behavior

So long as they are in deep water, these waves are

basically impossible to observe. They do not cause any

problems for ocean-going vessels.

As they reach the shore, they “pile up” and grow to

huge proportions; this is the origin of their destructive

power.
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There are other instances of dangerous
water waves that are believed to have fea-
tures in common with earthquake gener-
ated tsunami.
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Two examples of the pattern of waves generated  by ships are shown in Figure 1.  Figure 
1(a) shows an HSC operating at sub-critical speed 4.  This shows the classical Kelvin5 wave 
pattern in which waves are contained  within a wedge of ±19° from the bow of the ship.  
Figure 1(b) shows an HSC operating near critical speed  in which the waves spread  out to 
almost at right angles to the d irection of travel of the ship, and  the wave crests extend  far 
away from the ship’s line of passage.  The waves that spread  out from the bow and  stern of 
the ship are called  d ivergent waves.  There is also a set of waves behind  the ship at right 
angles to the line of passage.  These are called  transverse waves, but are only present for 
sub-critical flow conditions. 

 

(a) HSC operating at sub-critical  
speed  in the Marlborough Sounds 

(b) HSC operating near super-critical  
speed  in the Marlborough Sound  

 
Figure 1  Photographs of the wake patterns generated  by high-speed craft (HSC) 

 

The wave characteristics at a fixed  point are usually assessed  from a wave record  obtained  
by a wave measuring device.  Wave height and  wave period  can be determined  from such 
wave records.  The wave height and  wave period , as defined  in Schedule 2, are used  to 
quantify the wave characteristics under the Bylaw.  In order to qualify for an exemption, 
operators must demonstrate that at a higher speed  the waves generated  by the ship will 
comply with the Wash Rule, namely: 

 
T

4.50.5  H ≤  (1)  

in which H is the wave height in metres, and  T is the corresponding wave period  in 
seconds, of each wave created  by the vessel in 3 metres depth of water near the shoreline.  
The scientific basis of this rule, as applied  in the Marlborough Sounds, is set in Croad  

                                                      
4 The terms sub-critical and  critical flow conditions or speed  are d iscussed  in Sections 4.4 and  4.5. 
5 Named after Lord  Kelvin who first published  a mathematical descrip tion of such waves in 1887. 

Late 90s high speed ferry wakes on the English Coast: 15’ wave.

1 death.
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The 1963 Vajont Dam Disaster: 800’ (800 feet!) wave. 2,000

deaths.
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In the time of Zeus...

It was known at least as long ago as 426 BCE that

earthquakes caused tsunami. From History of the Pelo-

ponnesian War by Thucydides:

“...the sea came in at Orobiae...and overflowed

most part of the city. ...the people ... perished.

And it seemeth unto me that without an earth-

quake such an accident could never happen.”

But only in the last 150 years or so do we have an

understanding of their behavior far from shore...
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Mathematics has played a crucial role in
our understanding of tsunami.

The story begins in Scotland...
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The most famous quote in mathematical fluid me-

chanics

“I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat suddenly
stopped - not so the mass of water in the channel which it had put
in motion; it accumulated round the prow of the vessel in a state
of violent agitation, then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of a large solitary eleva-
tion, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change
of form or diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine miles an
hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and
after a chase of one or two miles I lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon which I
have called the Wave of Translation.”

John Scott Russell
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Wave re-creation
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The oceanographic and fluid mechanics communities

generally hold that tsunami are instances of Russell’s

“waves of translation” in the open ocean.

These waves are generally called “solitary waves” nowa-

days.

In Russell’s time, it was hotly debated whether or not

such waves actually exist.
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Umm, what do you mean by “exist?”
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I mean, are there solutions of the equa-
tions of motion for water waves which be-
have like those Russell claims to have ob-
served.
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Umm, what are the equations of motion
for water waves?
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In physics, if you know the Kinetic and Potential en-

ergy of a mechanical system, you can write down the

equations of motion for that system.
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KE( ) =
1
2
ρ|U |2dxdy
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PE( ) = ρg(y + D)dxdy
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KE =
∫
R

∫ H(x,t)

−D

1

2
ρ|U(x, y, t)|2dydx.

PE =
∫
R

1

2
ρgH2(x, t)dx.

TURN THE PHYSICS CRANK!

This strategy for getting the equations of motion is due to Za-

kharov in 1968.
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OH NOESSS!

∂tH = G(H)ψ

∂tψ = −gH −
1

2
|∂xψ|2 +

(G(H)ψ + ∂xH∂xψ)2

2
(
1 + |∂xH|2

)

H(x, t) = surface elevation.

ψ(x, t) = Φ(x,H(x, t), t) where ∇Φ(x, y, t) = U = fluid
velocity.

G(H) = “Dirichlet to Neumann” map for the fluid do-
main. (People spend their whole research careers study-
ing these things.)
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∂tH = G(H)ψ

∂tψ = −gH −
1

2
|∂xψ|2 +

(G(H)ψ + ∂xH∂xψ)2

2
(
1 + |∂xH|2

)

These equations are horrible, but they apply to BASI-

CALLY ANY SORT OF SURFACE WAVE.

We are not interested in any old wave, we are interested

in Russell’s wave of translation.
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The observed wave of translation:

1. is NOT VERY high;

2. is VERY wide.

Russell did experiments in the 19th century that demon-

strated that if the the amplitude of the wave was given

by ε, then its wavelength is 1/
√
ε.

40



So fix 0 < ε� 1 and set:

H(x, t) = εu(
√
εx, εt)

and a similar expression for ψ. (This was an idea of

Joseph Valentin Boussinesq in 1872.)
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If you make the assumption

H(x, t) = εu(
√
εx, εt)

then this system:

∂tH = G(H)ψ

∂tψ = −gH −
1

2
|∂xψ|2 +

(G(H)ψ + ∂xH∂xψ)2

2
(
1 + |∂xH|2

)

(after omitting “small terms”) becomes...
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The Korteweg-de Vries equation*

∂tu = −c0∂xu+ α∂3
xu+ βu∂xu

Here

c0 =
√
gD

and α and β are complicated expressions made out of

g, D and some other things.

(* It was first derived by Boussinesq, but K and d-V

did it in 1895 to more acclaim...)
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∂tu = −c0∂xu+ α∂3
xu+ βu∂xu

In a rough sense, the debate in the old days over the

existence of Russell’s wave of translation hinged on cor-

rectly assigning the values of α and β. (No one argued

with c0.)

Many people thought that β = 0.
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So they’d have:

∂tu = −c0∂xu+ α∂3
xu

Let’s look for a special “wave solution” of the form

u(x, t) = sin [k (x− ct)] .

Notice: this is traveling sine wave with spatial frequency

k and speed c = c(k).
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∂tu = −c0∂xu+ α∂3
xu

u(x, t) = sin [k (x− ct)] .

∂tu = −ck cos[k(x− ct)]

∂xu = k cos[k(x− ct)]

∂3
xu = −k3 cos[k(x− ct)]
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∂tu = −c0∂xu+ α∂3
xu

u(x, t) = sin [k (x− ct)] .

∂tu = −ck cos[k(x− ct)]

∂xu = k cos[k(x− ct)]

∂3
xu = −k3 cos[k(x− ct)]

− ck cos[k(x− ct)] =

− c0k cos[k(x− ct)]− αk3 cos[k(x− ct)]
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− ck cos[k(x− ct)] =

− c0k cos[k(x− ct)]− αk3 cos[k(x− ct)]

c = c0 + αk2

Important: The wavespeed depends on wavelength!

Note that it is α that causes this. If α = 0, all waves

move at the same speed, c0.
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This is called dispersion:

GO!Let's race, skinny!

Woe is me!

FINISH

Bring it on, you long-wave loser! BANZAI!!!!

Eat my dust!!!!

Wavespeed depends on wavelength!

50



Dispersion smooths things out

NERD MARATHON STARTING LINE

LATER ON IF EVERYONE RUNS AT THE SAME SPEED.

GO!

WITH DIFFERENT SPEEDS.
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Dispersion smooths things out

NERD MARATHON STARTING LINE

LATER ON IF EVERYONE RUNS AT THE SAME SPEED.

GO!

WITH DIFFERENT SPEEDS.

= NERDS/INCH
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One can uses this idea to show a “dispersive estimate”

for solutions of

∂tu = −c0∂xu+ α∂3
xu

which are initially sort of localized:

AMPLITUDE := sup
x∈R
|u(x, t)| ≤ t−1/3

∫ ∞
−∞
|u(x,0)| dx

The point: there’s no way such a wave is making it

from the middle of the ocean to shore.
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Nonlinearity

Our model equation for water waves:

∂tu = −c0∂xu+ α∂3
xu+ βu∂xu

has both dispersive and nonlinear effects.

What does that nonlinear term do?

Famously, Burgers’ equation

∂tu = u∂xu

forms “shocks” in finite time.
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Shocking behavior

Recall that solutions of

∂tu = −c0∂xu
move at speed c0.

For Burgers’ equation, ∂tu = u∂xu we could look at this
like

∂tu = −c(u)∂xu.

where c(u) = −u.

That is: where u is large, the speed is large. where u

is small, the speed is small.

The top of the wave goes faster than the bottom.
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Though this is harder to quantify, if the nonlinear ef-

fects are dominant, then one would expect waves gener-

ated in the middle of the ocean to “break” long before

they hit shore.
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A disastrous balance

In the KdV equation,

∂tu = −c0∂xu+ α∂3
xu+ βu∂xu

the dispersive effects and nonlinear effects are, in some
sense, perfectly matched. Some waves neither break,
nor disperse.

There is a special solution of this equation called a
SOLITON:

u(x, t) = asech2
(√

a(x− (c0 + a)t)
)

a = AMPLITUDE > 0
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Observations:

u(x, t) =
1

2
asech2

(√
a

2
(x− (c0 + a)t)

)

1. Higher waves go faster.

2. Higher waves are narrower.

3. This wave NEVER changes its shape, no matter

how far it travels.
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Take-away message

Dispersive and nonlinear effects balance in the equa-

tions of motion for surface water waves. The result

is a class of wave which never changes shape and can

travel enormous distances: the tsunami.
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Final remarks

The KdV equation is only an approximate model for wa-

ter waves, but huge progress has been made in the late

20th century in (a) rigorously connecting KdV to wa-

ter waves (eg Schneider and Wayne 2000), (b) showing

that solitary waves exist in water waves (eg Beale 1979)

and (c) understanding the interaction of the wave with

the coast (too many to list.)
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Final remarks

The KdV equation itself turns out to be a MATHE-

MATICALLY remarkable equation. The initial value

problem can solved for basically any initial data explic-

itly by use of something called “inverse scattering.”

The method connects it seemingly disparate branches

of mathematics like random matrix theory and algebraic

geometry.
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Final remarks

In addition to water waves, many interesting physical

phenomena are modeled by nonlinear dispersive PDE!

So are:

(a) Light pulses in fiber optics.

(b) Sound waves in the air.

(c) Vibrations in atomic lattices.

(d) Plasmas in the sun.

(e) Bose-Einstein condensates.
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State of the art:

Two Fields medals have been awarded to people who

have substantially contributed to understanding the in-

terplay of dispersion and nonlinearity. (Bourgain ’94

and Tao ’06.)

There are many nonlinear dispersive PDE and in 2011

there are many many MANY different ways of treating

a given nonlinear dispersive problem. (4132 Matches of

Korteweg de Vries in MathSciNet. 6536 for nonlinear

Schrödinger. 4 for Koretweg.)
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Thanks!
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