A Collaborative National Center for Fusion & Plasma Research
Subscribe to Princeton Plasma Physics Lab RSS

The mysteries of plasma and solar eruptions earn PPPL graduate an astrophysics prize

Clayton Myers, a 2015 graduate of the Program in Plasma Physics in the Princeton Department of Astrophysical Sciences who did his research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), has won the 2018 Dissertation Prize awarded by the Laboratory Astrophysics Division (LAD) of the American Astronomical Society (AAS). Myers, now a physicist at Sandia National Laboratory, received the award for his work on the Magnetic Reconnection Experiment (MRX) at PPPL.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas, scientists find

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found. 

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found.

Two PPPL physicists, David Johnson and Charles Skinner, named ITER Scientist Fellows

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

Theoretical physicist Elena Belova named to editorial board of Physics of Plasmas

Elena Belova, a principal research physicist in the Theory Department at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been named to the editorial board of the Physics of Plasmas, a monthly peer-reviewed scientific journal published by the American Institute of Physics. Duties of board members, selected for their high degree of technical expertise, range from suggesting topics for special sections to adjudicating impasses between authors and referees that arise over manuscripts.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000