A Collaborative National Center for Fusion & Plasma Research
Subscribe to Princeton Plasma Physics Lab RSS

Fiery sighting: A new physics of eruptions that damage fusion experiments

Sudden bursts of heat that can damage the inner walls of tokamak fusion experiments are a hurdle that operators of the facilities must overcome. Such bursts, called “edge localized modes (ELMs),” occur in doughnut-shaped tokamak devices that house the hot, charged plasma that is used to replicate on Earth the power that drives the sun and other stars. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have directly observed a possible and previously unknown process that can trigger damaging ELMs.

Found: A precise method for determining how waves and particles affect fusion reactions

Like surfers catching ocean waves, particles within the hot, electrically charged state of matter known as plasma can ride waves that oscillate through the plasma during experiments to investigate the production of fusion energy. The oscillations can displace the particles so far that they escape from the doughnut-shaped tokamak that houses the experiments, cooling the plasma and making fusion reactions less efficient. Now a team of physicists led by the U.S.

Found: A precise method for determining how waves and particles affect fusion reactions

Like surfers catching ocean waves, particles within the hot, electrically charged state of matter known as plasma can ride waves that oscillate through the plasma during experiments to investigate the production of fusion energy. The oscillations can displace the particles so far that they escape from the doughnut-shaped tokamak that houses the experiments, cooling the plasma and making fusion reactions less efficient. Now a team of physicists led by the U.S.

Turn, turn, turn: New findings bring physicists closer to understanding the formation of planets and stars

Down a hallway in the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists study the workings of a machine in a room stuffed with wires and metal components. The researchers seek to explain the behavior of vast clouds of dust and other material that encircle stars and black holes and collapse to form planets and other celestial bodies. 

Turn, turn, turn: New findings bring physicists closer to understanding the formation of planets and stars

Down a hallway in the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists study the workings of a machine in a room stuffed with wires and metal components. The researchers seek to explain the behavior of vast clouds of dust and other material that encircle stars and black holes and collapse to form planets and other celestial bodies.

Scientists inch closer to fusion energy with discovery of a process that stabilizes plasmas

Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous.

New findings reveal the behavior of turbulence in the exceptionally hot solar corona

The sun defies conventional scientific understanding. Its upper atmosphere, known as the corona, is many millions of degrees hotter than its surface. Astrophysicists are keen to learn why the corona is so hot, and scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have completed research that may advance the search.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000