A Collaborative National Center for Fusion & Plasma Research

Press Releases Archive

Subscribe to Press Releases Archive
March 16, 2018

Birds do it and so do doughnut-shaped fusion facilities called “tokamaks.” But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect — is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.  Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

March 15, 2018

A millisecond burst of light on a computer monitor signaled production of the first plasma in a powerful new device for advancing research into magnetic reconnection — a critical but little understood process that occurs throughout the universe. The first plasma, a milestone event signaling the beginning of research capabilities, was captured on camera on Sunday, March 4, at 8:13 p.m. at Jadwin Hall at Princeton University, and marked completion of the four-year construction of the device, the Facility for Laboratory Reconnection Experiment (FLARE).

March 12, 2018

A key challenge in fusion research is maintaining the stability of the hot, charged plasma that fuels fusion reactions inside doughnut-shaped facilities called “tokamaks.” Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), have recently found that drifting particles in the plasma, which consists of free electrons and atomic nuclei, can forestall instabilities that reduce the pressure crucial to high-performance fusion reactions inside these facilities.

March 8, 2018

Nanoparticles, superstrong and flexible structures such as carbon nanotubes that are measured in billionths of a meter — a diameter thousands of times thinner than a human hair — are used in everything from microchips to sporting goods to pharmaceutical products. But large-scale production of high-quality particles faces challenges ranging from improving the selectivity of the synthesis that creates them and the quality of the synthesized material to the development of economical and reliable synthesis processes. 

February 27, 2018

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered key conditions that give rise to fast magnetic reconnection, the process that triggers solar flares, auroras, and geomagnetic storms that can disrupt signal transmissions and other electrical activities, including cell phone service. The process occurs when the magnetic field lines in plasma, the hot, charged state of matter composed of free electrons and atomic nuclei, break apart and violently reconnect, releasing vast amounts of energy.

February 16, 2018

The U.S. Department of Energy’s (DOE) Office of Science, the largest U.S. supporter of basic research in the physical sciences, celebrated the 40th anniversary of its founding in 2017.  To mark the 40th anniversary of Office of Science support for the country’s national laboratories and basic research at universities and private industry, the DOE has compiled 40 milestone papers that represent what the Department calls “a cream-of-the crop selection that has changed the face of science.”

February 13, 2018

Clayton Myers, a 2015 graduate of the Program in Plasma Physics in the Princeton Department of Astrophysical Sciences who did his research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), has won the 2018 Dissertation Prize awarded by the Laboratory Astrophysics Division (LAD) of the American Astronomical Society (AAS). Myers, now a physicist at Sandia National Laboratory, received the award for his work on the Magnetic Reconnection Experiment (MRX) at PPPL.

February 12, 2018

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

February 5, 2018

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found. 

February 5, 2018

Elena Belova, a principal research physicist in the Theory Department at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been named to the editorial board of the Physics of Plasmas, a monthly peer-reviewed scientific journal published by the American Institute of Physics. Duties of board members, selected for their high degree of technical expertise, range from suggesting topics for special sections to adjudicating impasses between authors and referees that arise over manuscripts.

January 29, 2018

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

January 8, 2018

Throughout 2017 researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have produced new insights into the science of fusion energy that powers the sun and stars and the physics of plasma, the hot, charged state of matter that consists of electrons and atomic nuclei, or ions, and makes up 99 percent of the visible universe. The research advances the development of fusion as a safe, clean and plentiful source of power, produced in doughnut-shaped facilities called tokamaks, and explores the diverse aspects and applications of plasma.

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000