A Collaborative National Center for Fusion & Plasma Research

Press Releases Archive

Subscribe to Press Releases Archive
August 12, 2019

Timothy Stoltzfus-Dueck, a theoretical physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has won a DOE Early Career Research Award for exceptional scientists in the early stages of their careers. Stoltzfus-Dueck will use the five-year, approximately $500,000 per year award to develop and test models essential to the confinement of plasma, the hot, charged gas that must be tightly confined in doughnut-shaped devices to produce fusion reactions.

August 9, 2019

Hillary Stephens is a physics professor at Pierce College Fort Steilacoom, a two-year college in Lakewood, Washington, where students typically aren’t exposed to research experiments. Stephens came to a three-day workshop at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) hoping to find plasma physics experiments she can bring back to the classroom.

July 31, 2019

PPPL and the New Jersey Department of Labor embark on a new apprenticeship program to offer high-tech on-the-job training and education to future technicians.

July 29, 2019

High-energy shock waves driven by solar flares and coronal mass ejections of plasma from the sun erupt throughout the solar system, unleashing magnetic space storms that can damage satellites, disrupt cell phone service and blackout power grids on Earth. Also driving high-energy waves is the solar wind — plasma that constantly flows from the sun and buffets the Earth’s protective magnetic field.

Now experiments led by researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in the Princeton Center for Heliophysics 

July 25, 2019

A tiny satellite under construction at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) could open new horizons in space exploration.  Princeton University students are building the device, called a cubic satellite, or CubeSat, as a testbed for a miniaturized rocket thruster with unique capabilities being developed at PPPL.

July 24, 2019

Subatomic particles zip around ring-shaped fusion machines known as tokamaks and sometimes merge, releasing large amounts of energy. But these particles — a soup of charged electrons and atomic nuclei, or ions, collectively known as plasma — can sometimes leak out of the magnetic fields that confine them inside tokamaks. The leakage cools the plasma, reducing the efficiency of the fusion reactions and damaging the machine. Now, physicists have confirmed that an updated computer code could help to predict and ultimately prevent such leaks from happening.

July 22, 2019

Rajesh Maingi, a world-renowned expert on the physics of plasma, has been named to co-lead a national program to unify research on liquid metal components for future tokamaks, doughnut-shaped fusion facilities. Maingi, who heads research on boundary physics and plasma-facing components at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), will coordinate the three-year project in conjunction with Oak Ridge National Laboratory and the University of Illinois at Urbana-Champaign.

July 18, 2019

Workshop offers women and underrepresented minority students a pathway into plasma physics and fusion energy research careers. 

July 18, 2019

Graduate student Alexander Glasser, who arrived at the Program in Plasma Physics at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) after nearly a decade working on Wall Street, has won a highly competitive Charlotte Elizabeth Procter Honorific Fellowship from Princeton University. The fellowship provides full tuition and a stipend for the 2019-2020 academic year for students “displaying the highest scholarly excellence in graduate work.”

July 12, 2019

Vast rings of electrically charged particles encircle the Earth and other planets. Now, a team of scientists has completed research into waves that travel through this magnetic, electrically charged environment, known as the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.

July 11, 2019

Fusion energy could be a “game changer” as a possible future option for generating clean, safe, and abundant electric energy, U.S. Rep. Andy Kim (D-NJ) said during a visit to the Princeton Plasma Physics Laboratory (PPPL) on July 8. 

July 10, 2019

Scientists seeking to bring to Earth the fusion that powers the sun and stars must control the hot, charged plasma — the state of matter composed of free-floating electrons and atomic nuclei, or ions — that fuels fusion reactions. For scientists who confine the plasma in magnetic fields, a key task calls for mapping the shape of the fields, a process known as measuring the equilibrium, or stability, of the plasma. At the U.S.

July 2, 2019

Beryllium, a hard, silvery metal long used in X-ray machines and spacecraft, is finding a new role in the quest to bring the power that drives the sun and stars to Earth. Beryllium is one of the two main materials used for the wall in ITER, a multinational fusion facility under construction in France to demonstrate the practicality of fusion power. Now, physicists from the U.S.

July 1, 2019

Leadership of laboratory experiments that bring astrophysical processes down to Earth has won physicist Will Fox the 2019 Thomas H. Stix Award.  The American Physical Society (APS) honor, which recognizes outstanding early career contributions to plasma physics, was established in 2013 in the name of the late Thomas H. Stix, the pioneering plasma researcher who founded the graduate plasma physics program at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL).

Original and seminal experiments

July 1, 2019

From helping the nation’s power grid to advancing the creation of “a star in a jar” for a virtually endless supply of electric power, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed insights and discoveries over the past year that advance understanding of the universe and the prospect for safe, clean, and abundant energy.

June 20, 2019

The Princeton Plasma Physics Laboratory (PPPL) hosted its largest group of undergraduate students ever for the annual undergraduate plasma workshop June 10 to 14 with more than 60 physics and engineering students coming from as far away as South Dakota, Washington, and Puerto Rico for the intensive, one-week course in plasma physics. 

June 11, 2019

The U.S. Department of Energy (DOE) has launched an ambitious new program to encourage private-pubic partnerships to speed the development on Earth of the fusion energy that powers the sun and most stars. The DOE’s Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory, home of the US ITER Project Office, will manage the program, with PPPL physicist Ahmed Diallo serving as deputy director and Oak Ridge fusion engineer Dennis Youchison serving as director. 

June 10, 2019

A key obstacle to controlling on Earth the fusion that powers the sun and stars is leakage of energy and particles from plasma, the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), physicists have been focusing on validating computer simulations that forecast energy losses caused by turbulent transport during fusion experiments.

June 6, 2019

High-energy ion beams — laser-like beams of atomic particles fired through accelerators — have applications that range from inertial confinement fusion to the production of superhot extreme states of matter that are thought to exist in the core of giant planets like Jupiter and that researchers are eager to study. These positively charged ion beams must be neutralized by negatively charged electrons to keep them sharply focused. However, researchers have found many obstacles to the neutralization process.

Featured Article

May 21, 2019

Institutions ranging from NASA to the Korean Physical Society have recently bestowed national and international honors on four scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The awards recognize a veteran and three early career physicists for their path-setting achievements in fusion and plasma science research. The honorees and their notable contributions:

Rajesh Maingi named Fellow of the American Nuclear Society

May 17, 2019

Machine learning (ML), a form of artificial intelligence that recognizes faces, understands language and navigates self-driving cars, can help bring to Earth the clean fusion energy that lights the sun and stars. Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are using ML to create a model for rapid control of plasma — the state of matter composed of free electrons and atomic nuclei, or ions — that fuels fusion reactions.

May 13, 2019

Scientists have created a novel method for measuring the stability of a soup of ultra-hot and electrically charged atomic particles, or plasma, in fusion facilities called “tokamaks.” Involving an innovative use of a mathematical tool, the method might lead to a technique for stabilizing plasma and making fusion reactions more efficient.

May 1, 2019

Lithium, the light silvery metal used in everything from pharmaceutical applications to batteries that power your smart phone or electric car, could also help harness on Earth the fusion energy that lights the sun and stars. Lithium can maintain the heat and protect the walls inside doughnut-shaped tokamaks that house fusion reactions, and will be used to produce tritium, the hydrogen isotope that will combine with its cousin deuterium to fuel fusion in future reactors.

April 18, 2019

Artificial intelligence (AI), a branch of computer science that is transforming scientific inquiry and industry, could now speed the development of safe, clean and virtually limitless fusion energy for generating electricity. A major step in this direction is under way at the U.S.

April 15, 2019

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered valuable information about how electrically charged gas known as “plasma” flows at the edge inside doughnut-shaped fusion devices called “tokamaks.” The findings mark an encouraging sign for the development of machines to produce fusion energy for generating electricity without creating long-term hazardous waste.

April 9, 2019

To capture and control on Earth the fusion reactions that drive the sun and stars, researchers must first turn room-temperature gas into the hot, charged plasma that fuels the reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists have conducted an analysis that confirms the effectiveness of a novel, non-standard way for starting up plasma in future compact fusion facilities.

April 4, 2019

Jon Menard, the head of research on the National Spherical Torus Experiment-Upgrade (NSTX-U) at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), has been named the new PPPL deputy director for research. He replaces Michael Zarnstorff, the deputy director for the past decade, who becomes the chief scientist at PPPL, a position that will oversee strategic scientific planning. 

March 26, 2019

The number of female engineers at the Princeton Plasma Physics Laboratory (PPPL) has increased over the years but women engineers say they are still often the only one females in the room. Now they are trying to change that. 

Female engineers at PPPL have formed a Women in Engineering group aimed at recruiting more female engineers, supporting outreach efforts to inspire girls and young women to consider STEM careers and perhaps most importantly, providing support to each other. 

March 19, 2019
Robots, forensics, and cool chemistry aim to interest girls in STEM education

Some 750 girls will operate robots, use goggles to get a 3-D view of the brain, learn about computer coding and talk to FBI forensics investigators at the Princeton Plasma Physics Laboratory’s Young Women’s Conference in Science, Technology, Engineering and Mathematics (STEM) on Friday, March 22, at the Frick Chemistry Laboratory on the Princeton University campus. 

March 19, 2019

Can tokamak fusion facilities, the most widely used devices for harvesting on Earth the fusion reactions that power the sun and stars, be developed more quickly to produce safe, clean, and virtually limitless energy for generating electricity? Physicist Jon Menard of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has examined that question in a detailed look at the concept of a compact tokamak equipped with high temperature superconducting (HTS) magnets.

March 15, 2019

The U.S. Department of Energy announced March 15 that Princeton University will continue to manage and operate the DOE’s Princeton Plasma Physics Laboratory, located on Princeton University’s Forrestal Campus in Plainsboro, New Jersey. The extended contract, which runs through March 31, 2022, also highlights collaborations among the University, the lab and the DOE.

March 14, 2019

Princeton Plasma Physics Laboratory physicist Sam Cohen will receive funding from a U.S. Department of Energy (DOE) award to his collaborator to upgrade and operate his Princeton Field Reversed Configuration device, the PFRC-2. The data produced could allow the design of future devices that might one day be used as a portable generator. 

Cohen will receive $700,000 from a $1.25 million award from the Advanced Research Projects Agency-Energy (ARPA-E) to Princeton Fusion Systems, which is working with Cohen on development of the device. 

March 12, 2019

Whether zipping through a star or a fusion device on Earth, the electrically charged particles that make up the fourth state of matter better known as plasma are bound to magnetic field lines like beads on a string. Unfortunately for plasma physicists who study this phenomenon, the magnetic field lines often lack simple shapes that equations can easily model. Often they twist and knot like pretzels. Sometimes, when the lines become particularly twisted, they snap apart and join back together, ejecting blobs of plasma and tremendous amounts of energy.

February 26, 2019

The Ridge Team from Basking Ridge, New Jersey, will go to Washington, D.C., for the National Science Bowl® Finals after battling out a win against a previous champion, West Windsor-Plainsboro South, at the New Jersey Regional Science Bowl on Feb. 23 hosted by the Princeton Plasma Physics Laboratory (PPPL). 

February 18, 2019

Fast magnetic reconnection, the rapid convergence, separation and explosive snapping together of magnetic field lines, gives rise to northern lights, solar flares and geomagnetic storms that can disrupt cell phone service and electric power grids. The phenomenon takes place in plasma, the state of matter composed of free electrons and atomic nuclei, or ions, that makes up 99 percent of the visible universe. But whether fast reconnection can occur in partially ionized plasma — plasma that includes atoms as well as free electrons and ions — is not well understood.

February 13, 2019

Stuart Hudson, acting head of the Princeton Plasma Physics Laboratory’s Theory Department, visited three national laboratories recently as one of 15 national laboratory leaders from a variety of backgrounds selected for the U.S. Department of Energy’s (DOE) Oppenheimer Science and Energy Leadership Program. 

February 5, 2019

How have stars and planets developed from the clouds of dust and gas that once filled the cosmos? A novel experiment at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has demonstrated the validity of a widespread theory known as “magnetorotational instability,” or MRI, that seeks to explain the formation of heavenly bodies.

January 24, 2019

Scientists seeking to capture and control on Earth fusion energy, the process that powers the sun and stars, face the risk of disruptions — sudden events that can halt fusion reactions and damage facilities called tokamaks that house them. Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), and the University of Washington have developed a novel prototype for rapidly controlling disruptions before they can take full effect.

January 22, 2019

Want to create your own plasma? You can create and control a plasma from the comfort of your own device.

The Remote Glow Discharge Experiment (RGDX) at the Princeton Plasma Physics Laboratory (PPPL) allows you to turn on a plasma and change the gas pressure, the voltage, and the strength of the electromagnets surrounding it from wherever you are. From a web browser, you can control a plasma with a magnetic field, the same way scientists control a plasma in a tokamak, the magnetic devices that scientists use in fusion experiments.

January 16, 2019

Craig Ferguson, a leader with more than 25 years of experience at U.S. Department of Energy (DOE) laboratories and other federal facilities, will become deputy director for operations and chief operating officer at the Princeton Plasma Physics Laboratory (PPPL) after a nationwide search. He will begin on Feb. 4. 

January 16, 2019

Sudden bursts of heat that can damage the inner walls of tokamak fusion experiments are a hurdle that operators of the facilities must overcome. Such bursts, called “edge localized modes (ELMs),” occur in doughnut-shaped tokamak devices that house the hot, charged plasma that is used to replicate on Earth the power that drives the sun and other stars. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have directly observed a possible and previously unknown process that can trigger damaging ELMs.

January 14, 2019

Like surfers catching ocean waves, particles within the hot, electrically charged state of matter known as plasma can ride waves that oscillate through the plasma during experiments to investigate the production of fusion energy. The oscillations can displace the particles so far that they escape from the doughnut-shaped tokamak that houses the experiments, cooling the plasma and making fusion reactions less efficient. Now a team of physicists led by the U.S.

January 9, 2019

Down a hallway in the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists study the workings of a machine in a room stuffed with wires and metal components. The researchers seek to explain the behavior of vast clouds of dust and other material that encircle stars and black holes and collapse to form planets and other celestial bodies. 

January 8, 2019

From new insights into the control of nuclear fusion to improved understanding of the fabrication of material thousands of time thinner than a human hair, the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) achieved wide-ranging advances in 2018. Research at the Laboratory focuses on the physics of plasma, the state of matter composed of free electrons and atomic nuclei that fuels the fusion reactions that light the sun and stars and underlies fundamental processes throughout the cosmos.

January 8, 2019

Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous.

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000