A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

Doctoral graduate Yuan Shi wins 2020 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award

Physicist Yuan Shi, who received his doctorate from the Princeton Program in Plasma Physics in 2018, has won the prestigious 2020 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award presented by the American Physical Society (APS). The award recognizes “exceptional young scientists who have performed original doctoral thesis research of outstanding scientific quality and achievement in the area of plasma physics.” 

Mathematical noodling leads to new insights into an old fusion problem

A challenge to creating fusion energy on Earth is trapping the charged gas known as plasma that fuels fusion reactions within a strong magnetic field and keeping the plasma as hot and dense as possible for as long as possible. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have gained new insight into a common type of hiccup known as the sawtooth instability that cools the hot plasma in the center and interferes with the fusion reactions. These findings could help bring fusion energy closer to reality.

Quest, PPPL’s annual research magazine, reports breakthroughs and discoveries during the past year

From fresh insight into the capture and control on Earth of fusion energy that drives the sun and stars, to the launch of pioneering new initiatives, groundbreaking research and discoveries have marked the past year at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The Laboratory has advanced on all fronts and is expanding into new ones, and Quest reports on all the excitement around these activities in the 2020 edition.

Highly productive

A proven method for stabilizing efforts to bring fusion power to Earth

All efforts to replicate in tokamak fusion facilities the fusion energy that powers the sun and stars must cope with a constant problem — transient heat bursts that can halt fusion reactions and damage the doughnut-shaped tokamaks. These bursts, called edge localized modes (ELMs), occur at the edge of hot, charged plasma gas when it kicks into high gear to fuel fusion reactions.

PPPL ramps up activities for diagnostics for ITER fusion experiment

The U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has launched engineering design activity on several plasma diagnostic systems for ITER, the international fusion experiment now under construction in France. When installed on the ITER tokamak, these diagnostics will allow scientists to make measurements needed to understand the behavior of the hot super-charged gas called plasma under fusion conditions in which ITER will produce for the first time a self-sustaining or burning plasma.  

Lehigh University graduate student wins DOE award to conduct doctoral thesis work at PPPL

Vincent Graber, a doctoral student in mechanical engineering at Lehigh University, has won a highly competitive award from the U.S Department of Energy (DOE) that he will use to conduct research at the DOE’s Princeton Plasma Physics Laboratory (PPPL) on the design of a critical device to help bring the fusion energy that powers the sun and stars to Earth.

Return of the Blob: Scientists find surprising link to troublesome turbulence at the edge of fusion plasmas

Blobs can wreak havoc in plasma required for fusion reactions. This bubble-like turbulence swells up at the edge of fusion plasmas and drains heat from the edge, limiting the efficiency of fusion reactions in doughnut-shaped fusion facilities called “tokamaks.” Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have now discovered a surprising correlation of the blobs with fluctuations of the magnetic field that confines the plasma fueling fusion reactions in the device core. 

New aspect of understanding

New insights into the dynamic edge of fusion plasmas could help capture the power that drives the sun and stars

A major roadblock to producing safe, clean and abundant fusion energy on Earth is the lack of detailed understanding of how the hot, charged plasma gas that fuels fusion reactions behaves at the edge of fusion facilities called “tokamaks.” Recent breakthroughs by researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have advanced understanding of the behavior of the highly complex plasma edge in doughnut-shaped tokamaks on the road to capturing the fusion energy that powers the sun and stars.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn 

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000