A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas, scientists find

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found. 

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found.

Theoretical physicist Elena Belova named to editorial board of Physics of Plasmas

Elena Belova, a principal research physicist in the Theory Department at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been named to the editorial board of the Physics of Plasmas, a monthly peer-reviewed scientific journal published by the American Institute of Physics. Duties of board members, selected for their high degree of technical expertise, range from suggesting topics for special sections to adjudicating impasses between authors and referees that arise over manuscripts.

Two PPPL physicists, David Johnson and Charles Skinner, named ITER Scientist Fellows

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

Two PPPL physicists, David Johnson and Charles Skinner, named ITER Scientist Fellows

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

Theoretical physicist Elena Belova named to editorial board of Physics of Plasmas

Elena Belova, a principal research physicist in the Theory Department at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been named to the editorial board of the Physics of Plasmas, a monthly peer-reviewed scientific journal published by the American Institute of Physics. Duties of board members, selected for their high degree of technical expertise, range from suggesting topics for special sections to adjudicating impasses between authors and referees that arise over manuscripts.

Ten stories in 2017 you may have missed, plus a bonus

Throughout 2017 researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have produced new insights into the science of fusion energy that powers the sun and stars and the physics of plasma, the hot, charged state of matter that consists of electrons and atomic nuclei, or ions, and makes up 99 percent of the visible universe. The research advances the development of fusion as a safe, clean and plentiful source of power, produced in doughnut-shaped facilities called tokamaks, and explores the diverse aspects and applications of plasma.

Artificial intelligence helps accelerate progress toward efficient fusion reactions

Before scientists can effectively capture and deploy fusion energy, they must learn to predict major disruptions that can halt fusion reactions and damage the walls of doughnut-shaped fusion devices called tokamaks. Timely prediction of disruptions, the sudden loss of control of the hot, charged plasma that fuels the reactions, will be vital to triggering steps to avoid or mitigate such large-scale events.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000