A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

Fiery sighting: A new physics of eruptions that damage fusion experiments

Sudden bursts of heat that can damage the inner walls of tokamak fusion experiments are a hurdle that operators of the facilities must overcome. Such bursts, called “edge localized modes (ELMs),” occur in doughnut-shaped tokamak devices that house the hot, charged plasma that is used to replicate on Earth the power that drives the sun and other stars. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have directly observed a possible and previously unknown process that can trigger damaging ELMs.

Found: A precise method for determining how waves and particles affect fusion reactions

Like surfers catching ocean waves, particles within the hot, electrically charged state of matter known as plasma can ride waves that oscillate through the plasma during experiments to investigate the production of fusion energy. The oscillations can displace the particles so far that they escape from the doughnut-shaped tokamak that houses the experiments, cooling the plasma and making fusion reactions less efficient. Now a team of physicists led by the U.S.

Found: A precise method for determining how waves and particles affect fusion reactions

Like surfers catching ocean waves, particles within the hot, electrically charged state of matter known as plasma can ride waves that oscillate through the plasma during experiments to investigate the production of fusion energy. The oscillations can displace the particles so far that they escape from the doughnut-shaped tokamak that houses the experiments, cooling the plasma and making fusion reactions less efficient. Now a team of physicists led by the U.S.

Ten PPPL stories you may have missed from 2018 — plus a special bonus

From new insights into the control of nuclear fusion to improved understanding of the fabrication of material thousands of time thinner than a human hair, the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) achieved wide-ranging advances in 2018. Research at the Laboratory focuses on the physics of plasma, the state of matter composed of free electrons and atomic nuclei that fuels the fusion reactions that light the sun and stars and underlies fundamental processes throughout the cosmos.

Scientists inch closer to fusion energy with discovery of a process that stabilizes plasmas

Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous.

Scientists inch closer to fusion energy with discovery of a process that stabilizes plasmas

Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous.

Lithium earns honors for three physicists working to bring the energy that powers the sun to Earth

Major developments in the use of lithium to improve the performance of fusion plasmas — the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions — have earned a trio of physicists the 2018 outstanding research awards from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Scientists around the world are seeking to replicate on Earth the fusion that drives the sun and stars to produce a virtually inexhaustible supply of energy to generate electricity.

Lithium earns honors for three physicists working to bring the energy that powers the sun to Earth

Major developments in the use of lithium to improve the performance of fusion plasmas — the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions — have earned a trio of physicists the 2018 outstanding research awards from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Scientists around the world are seeking to replicate on Earth the fusion that drives the sun and stars to produce a virtually inexhaustible supply of energy to generate electricity.

Team led by PPPL wins major time on supercomputers to study the complex edge of fusion plasmas

he U.S. Department of Energy (DOE) has awarded major computer hours on three leading supercomputers, including the world’s fastest, to a team led by C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL). The team is addressing issues that must be resolved for successful operation of ITER, the international experiment under construction in France to demonstrate the feasibility of producing fusion energy — the power that drives the sun and stars — in a magnetically controlled fusion facility called a “tokamak.”

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000