A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

Applying mathematics to accelerate predictions for capturing fusion energy

A key issue for scientists seeking to bring the fusion that powers the sun and stars to Earth is forecasting the performance of the volatile plasma that fuels fusion reactions. Making such predictions calls for considerable costly time on the world’s fastest supercomputers. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have borrowed a technique from applied mathematics to accelerate the process.

Applying mathematics to accelerate predictions for capturing fusion energy

A key issue for scientists seeking to bring the fusion that powers the sun and stars to Earth is forecasting the performance of the volatile plasma that fuels fusion reactions. Making such predictions calls for considerable costly time on the world’s fastest supercomputers. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have borrowed a technique from applied mathematics to accelerate the process.

A new explanation for sudden collapses of heat in plasmas can help create fusion energy on Earth

Scientists seeking to bring the fusion that powers the sun and stars to Earth must deal with sawtooth instabilities — up-and-down swings in the central pressure and temperature of the plasma that fuels fusion reactions, similar to the serrated blades of a saw.  If these swings are large enough, they can lead to the sudden collapse of the entire discharge of the plasma.  Such swings were first observed in 1974 and have so far eluded a widely accepted theory that explains experimental observations.

Consistent with observations

A new explanation for sudden collapses of heat in plasmas can help create fusion energy on Earth

Scientists seeking to bring the fusion that powers the sun and stars to Earth must deal with sawtooth instabilities — up-and-down swings in the central pressure and temperature of the plasma that fuels fusion reactions, similar to the serrated blades of a saw.  If these swings are large enough, they can lead to the sudden collapse of the entire discharge of the plasma.  Such swings were first observed in 1974 and have so far eluded a widely accepted theory that explains experimental observations.

Consistent with observations

A landmark plan for realizing fusion energy and advancing plasma science

Creating and controlling on Earth the fusion energy that powers the sun and stars is a key goal of scientists around the world. Production of this safe, clean and limitless energy could generate electricity for all humanity, and the possibility is growing closer to reality. Now a landmark report released this week by the American Physical Society Division of Plasma Physics Community Planning Process proposes immediate steps for the United States to take to accelerate U.S.

A landmark plan for realizing fusion energy and advancing plasma science

Creating and controlling on Earth the fusion energy that powers the sun and stars is a key goal of scientists around the world. Production of this safe, clean and limitless energy could generate electricity for all humanity, and the possibility is growing closer to reality. Now a landmark report released this week by the American Physical Society Division of Plasma Physics Community Planning Process proposes immediate steps for the United States to take to accelerate U.S.

Artificial intelligence helps prevent disruptions in fusion devices

An international team of scientists led by a graduate student at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has demonstrated the use of Artificial Intelligence (AI), the same computing concept that will empower self-driving cars, to predict and avoid disruptions — the sudden release of energy stored in the plasma that fuels fusion reactions  — that can halt the reactions and severely damage fusion facilities.

Risk of disruptions

Feeding fusion: hydrogen ice pellets prove effective for fueling fusion plasmas

Researchers have found that injecting pellets of hydrogen ice rather than puffing hydrogen gas improves fusion performanceat the DIII-D National Fusion Facility, which General Atomics operates for the U.S. Department of Energy (DOE). The studies by physicists based at DOE’s Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL) compared the two methods, looking ahead to the fueling that will be used in ITER, the international fusion experiment under construction in France.

Improve the temperature

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000