A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering

More than 135 researchers and students from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) presented their latest findings at the 60th annual meeting of the American Physical Society Division of Plasma Physics — a worldwide gathering focused on fundamental plasma science research and discoveries. Some 1,700 participants from more than two dozen countries joined the November 5-to-9 event in Portland, Oregon, presenting posters and talks on topics ranging from astrophysical plasmas to nanotechnology to magnetic confinement fusion experiments.

Princeton Plasma Physics Laboratory designated an historic mechanical engineering site

The American Society of Mechanical Engineers (ASME) on Oct. 5 presented the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) with an engraved plaque designating the Laboratory an ASME historic mechanical engineering landmark for its achievements in the quest to develop magnetically controlled fusion energy. The ASME, which “promotes the art, science and practice of multidisciplinary engineering and allied sciences around the globe,” recognized  the Laboratory for its entire body of mechanical engineering achievements since 1951.

Princeton Plasma Physics Laboratory designated an historic mechanical engineering site

The American Society of Mechanical Engineers (ASME) on Oct. 5 presented the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) with an engraved plaque designating the Laboratory an ASME historic mechanical engineering landmark for its achievements in the quest to develop magnetically controlled fusion energy. The ASME, which “promotes the art, science and practice of multidisciplinary engineering and allied sciences around the globe,” recognized  the Laboratory for its entire body of mechanical engineering achievements since 1951.

Nat Fisch receives Fusion Power Associates’ Distinguished Career Award

Nat Fisch, associate director for academic affairs at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory  (PPPL), and professor of astrophysical sciences and director of the Program in Plasma Physics at Princeton University, has received a 2018 Distinguished Career Award from Fusion Power Associates (FPA). The FPA is a research and educational foundation that provides students, media and the public with information about the status of fusion development and other applications of plasma science.

Nat Fisch receives Fusion Power Associates’ Distinguished Career Award

Nat Fisch, associate director for academic affairs at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory  (PPPL), and professor of astrophysical sciences and director of the Program in Plasma Physics at Princeton University, has received a 2018 Distinguished Career Award from Fusion Power Associates (FPA). The FPA is a research and educational foundation that provides students, media and the public with information about the status of fusion development and other applications of plasma science.

Internationally renowned physicist Joel Hosea remembered for a 50-year career that encompassed much of PPPL’s history

The story of Joel Hosea’s career is the story of PPPL. The Laboratory, founded as Project Matterhorn in 1951, had only been called the Princeton Plasma Physics Laboratory (PPPL) for seven years when Hosea began work there in 1968. He worked at many of the Laboratory’s major experiments and devoted his 50-year career to research at PPPL and around the world. 

Hosea died on Aug. 25, just a day after beginning treatment at the Mayo Clinic in Minnesota. He was 79. 

Discovered: Optimal magnetic fields for suppressing instabilities in tokamaks

Fusion, the power that drives the sun and stars, produces massive amounts of energy. Scientists here on Earth seek to replicate this process, which merges light elements in the form of hot, charged plasma composed of free electrons and atomic nuclei, to create a virtually inexhaustible supply of power to generate electricity in what may be called a “star in a jar.”

Artificial intelligence project to help bring the power of the sun to Earth is picked for first U.S. exascale system

To capture and control the process of fusion that powers the sun and stars in facilities on Earth called tokamaks, scientists must confront disruptions that can halt the reactions and damage the doughnut-shaped devices.  Now an artificial intelligence system under development at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University to predict and tame such disruptions has been selected as an Aurora Early Science project by the Argonne Leadership Computing Facility, a DOE Office of Science User Facility.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000