A Collaborative National Center for Fusion & Plasma Research

Surface science

Subscribe to RSS - Surface science

The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas.

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas, scientists find

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found. 

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found.

Simulation demonstrates how exposure to plasma makes carbon nanotubes grow

At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow. Such tubes, measured in billionths of a meter, are found in everything from electrodes to dental implants and have many advantageous properties.

Simulation demonstrates how exposure to plasma makes carbon nanotubes grow

At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow. Such tubes, measured in billionths of a meter, are found in everything from electrodes to dental implants and have many advantageous properties.

Scientists at PPPL further understanding of a process that causes heat loss in fusion devices

Everyone knows that the game of billiards involves balls careening off the sides of a pool table — but few people may know that the same principle applies to fusion reactions. How charged particles like electrons and atomic nuclei that make up plasma interact with the walls of doughnut-shaped devices known as tokamaks helps determine how efficiently fusion reactions occur. Specifically, in a phenomenon known as secondary electron emission (SEE), electrons strike the surface of the wall, causing other electrons to be emitted.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000