A Collaborative National Center for Fusion & Plasma Research

Surface science

Subscribe to RSS - Surface science

The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas.

Research confirms ingredient in household cleaner could improve fusion reactions

Want to improve your chances of making electricity from fusion? Look no further than the cleaners under your kitchen sink.

Research led by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) provides new evidence that particles of boron, the main ingredient of Borax household cleaner, can coat internal components of doughnut-shaped plasma devices known as tokamaks and improve the efficiency of the fusion reactions.

Powder, not gas: A safer, more effective way to create a star on Earth

A major issue with operating ring-shaped fusion facilities known as tokamaks is keeping the plasma that fuels fusion reactions free of impurities that could reduce the efficiency of the reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that sprinkling a type of powder into the plasma could aid in harnessing the ultra-hot gas within a tokamak facility to produce heat to create electricity without producing greenhouse gases or long-term radioactive waste.

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found.

Simulation demonstrates how exposure to plasma makes carbon nanotubes grow

At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow. Such tubes, measured in billionths of a meter, are found in everything from electrodes to dental implants and have many advantageous properties.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000