A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

New simulations confirm efficiency of waste-removal process in plasma device

Just as fire produces ash, the combining of light elements in fusion reactions can produce material that eventually interferes with those same reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found evidence suggesting that a process could remove the unwanted material and make the fusion processes more efficient within a type of fusion facility known as a field-reversed configuration (FRC) device.

Princeton Plasma Physics Laboratory designated an historic mechanical engineering site

The American Society of Mechanical Engineers (ASME) on Oct. 5 presented the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) with an engraved plaque designating the Laboratory an ASME historic mechanical engineering landmark for its achievements in the quest to develop magnetically controlled fusion energy. The ASME, which “promotes the art, science and practice of multidisciplinary engineering and allied sciences around the globe,” recognized  the Laboratory for its entire body of mechanical engineering achievements since 1951.

PPPL’s Sam Cohen earns award at meeting of U.S. government-funded laboratories hosted by PPPL

Physicist Sam Cohen of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and local company Princeton Satellite Systems have won a Federal Laboratory Consortium  award for their joint efforts on a rocket propulsion technology at the Sept. 13 meeting of the Northeast Regional Federal Laboratory Consortium (FLC) at PPPL 

No longer whistling in the dark: Scientists uncover a little-understood source of waves generated throughout the universe

Magnetic reconnection, the snapping apart and violent reconnection of magnetic field lines in plasma — the state of matter composed of free electrons and atomic nuclei — occurs throughout the universe and can whip up space storms that disrupt cell phone service and knock out power grids. Now scientists at the U.S.

No longer whistling in the dark: Scientists uncover a little-understood source of waves generated throughout the universe

Magnetic reconnection, the snapping apart and violent reconnection of magnetic field lines in plasma — the state of matter composed of free electrons and atomic nuclei — occurs throughout the universe and can whip up space storms that disrupt cell phone service and knock out power grids. Now scientists at the U.S.

Nat Fisch receives Fusion Power Associates’ Distinguished Career Award

Nat Fisch, associate director for academic affairs at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory  (PPPL), and professor of astrophysical sciences and director of the Program in Plasma Physics at Princeton University, has received a 2018 Distinguished Career Award from Fusion Power Associates (FPA). The FPA is a research and educational foundation that provides students, media and the public with information about the status of fusion development and other applications of plasma science.

Nat Fisch receives Fusion Power Associates’ Distinguished Career Award

Nat Fisch, associate director for academic affairs at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory  (PPPL), and professor of astrophysical sciences and director of the Program in Plasma Physics at Princeton University, has received a 2018 Distinguished Career Award from Fusion Power Associates (FPA). The FPA is a research and educational foundation that provides students, media and the public with information about the status of fusion development and other applications of plasma science.

Engage engines! New research illuminates complex processes inside plasma propulsion systems for satellites

If you think plasma thrusters are found only in science fiction, think again. Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have been uncovering the physics behind these high-tech engines, which maneuver satellites in space. New research involving computer simulations gives physicists confidence that they can peer into the inner workings of these machines.

Engage engines! New research illuminates complex processes inside plasma propulsion systems for satellites

If you think plasma thrusters are found only in science fiction, think again. Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have been uncovering the physics behind these high-tech engines, which maneuver satellites in space. New research involving computer simulations gives physicists confidence that they can peer into the inner workings of these machines.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000