A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

Doctoral graduate Yuan Shi wins 2020 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award

Physicist Yuan Shi, who received his doctorate from the Princeton Program in Plasma Physics in 2018, has won the prestigious 2020 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award presented by the American Physical Society (APS). The award recognizes “exceptional young scientists who have performed original doctoral thesis research of outstanding scientific quality and achievement in the area of plasma physics.” 

While birds chirp, plasma shouldn’t: New insight into the formation of chirping could advance the development of fusion energy

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have furthered understanding of a barrier that can prevent doughnut-shaped fusion facilities known as tokamaks from operating at high efficiency by causing vital heat to be lost from them.

Mathematical noodling leads to new insights into an old fusion problem

A challenge to creating fusion energy on Earth is trapping the charged gas known as plasma that fuels fusion reactions within a strong magnetic field and keeping the plasma as hot and dense as possible for as long as possible. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have gained new insight into a common type of hiccup known as the sawtooth instability that cools the hot plasma in the center and interferes with the fusion reactions. These findings could help bring fusion energy closer to reality.

Mathematical noodling leads to new insights into an old fusion problem

A challenge to creating fusion energy on Earth is trapping the charged gas known as plasma that fuels fusion reactions within a strong magnetic field and keeping the plasma as hot and dense as possible for as long as possible. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have gained new insight into a common type of hiccup known as the sawtooth instability that cools the hot plasma in the center and interferes with the fusion reactions. These findings could help bring fusion energy closer to reality.

Scientists develop new tool to design better fusion devices

One way that scientists seek to bring to Earth the fusion process that powers the sun and stars is trapping hot, charged plasma gas within a twisting magnetic coil device shaped like a breakfast cruller. But the device, called a stellarator, must be precisely engineered to prevent heat from escaping the plasma core where it stokes the fusion reactions. Now, researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have demonstrated that an advanced computer code could help design stellarators that confine the essential heat more effectively.

Scientists develop new tool to design better fusion devices

One way that scientists seek to bring to Earth the fusion process that powers the sun and stars is trapping hot, charged plasma gas within a twisting magnetic coil device shaped like a breakfast cruller. But the device, called a stellarator, must be precisely engineered to prevent heat from escaping the plasma core where it stokes the fusion reactions. Now, researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have demonstrated that an advanced computer code could help design stellarators that confine the essential heat more effectively.

Quest, PPPL’s annual research magazine, reports breakthroughs and discoveries during the past year

From fresh insight into the capture and control on Earth of fusion energy that drives the sun and stars, to the launch of pioneering new initiatives, groundbreaking research and discoveries have marked the past year at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The Laboratory has advanced on all fronts and is expanding into new ones, and Quest reports on all the excitement around these activities in the 2020 edition.

Highly productive

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000