A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

Drifting and bouncing particles can help maintain stability in fusion plasmas

A key challenge in fusion research is maintaining the stability of the hot, charged plasma that fuels fusion reactions inside doughnut-shaped facilities called “tokamaks.” Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), have recently found that drifting particles in the plasma, which consists of free electrons and atomic nuclei, can forestall instabilities that reduce the pressure crucial to high-performance fusion reactions inside these facilities.

Drifting and bouncing particles can help maintain stability in fusion plasmas

A key challenge in fusion research is maintaining the stability of the hot, charged plasma that fuels fusion reactions inside doughnut-shaped facilities called “tokamaks.” Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), have recently found that drifting particles in the plasma, which consists of free electrons and atomic nuclei, can forestall instabilities that reduce the pressure crucial to high-performance fusion reactions inside these facilities.

Big steps toward control of production of tiny building blocks

Nanoparticles, superstrong and flexible structures such as carbon nanotubes that are measured in billionths of a meter — a diameter thousands of times thinner than a human hair — are used in everything from microchips to sporting goods to pharmaceutical products. But large-scale production of high-quality particles faces challenges ranging from improving the selectivity of the synthesis that creates them and the quality of the synthesized material to the development of economical and reliable synthesis processes. 

Plasma bubbles help trigger massive magnetic events in outer space

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered key conditions that give rise to fast magnetic reconnection, the process that triggers solar flares, auroras, and geomagnetic storms that can disrupt signal transmissions and other electrical activities, including cell phone service. The process occurs when the magnetic field lines in plasma, the hot, charged state of matter composed of free electrons and atomic nuclei, break apart and violently reconnect, releasing vast amounts of energy.

Plasma bubbles help trigger massive magnetic events in outer space

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered key conditions that give rise to fast magnetic reconnection, the process that triggers solar flares, auroras, and geomagnetic storms that can disrupt signal transmissions and other electrical activities, including cell phone service. The process occurs when the magnetic field lines in plasma, the hot, charged state of matter composed of free electrons and atomic nuclei, break apart and violently reconnect, releasing vast amounts of energy.

Fusion breakthroughs among highlights of the Department of Energy’s research milestones during the past 40 years

The U.S. Department of Energy’s (DOE) Office of Science, the largest U.S. supporter of basic research in the physical sciences, celebrated the 40th anniversary of its founding in 2017.  To mark the 40th anniversary of Office of Science support for the country’s national laboratories and basic research at universities and private industry, the DOE has compiled 40 milestone papers that represent what the Department calls “a cream-of-the crop selection that has changed the face of science.”

Fusion breakthroughs among highlights of the Department of Energy’s research milestones during the past 40 years

The U.S. Department of Energy’s (DOE) Office of Science, the largest U.S. supporter of basic research in the physical sciences, celebrated the 40th anniversary of its founding in 2017.  To mark the 40th anniversary of Office of Science support for the country’s national laboratories and basic research at universities and private industry, the DOE has compiled 40 milestone papers that represent what the Department calls “a cream-of-the crop selection that has changed the face of science.”

The mysteries of plasma and solar eruptions earn PPPL graduate an astrophysics prize

Clayton Myers, a 2015 graduate of the Program in Plasma Physics in the Princeton Department of Astrophysical Sciences who did his research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), has won the 2018 Dissertation Prize awarded by the Laboratory Astrophysics Division (LAD) of the American Astronomical Society (AAS). Myers, now a physicist at Sandia National Laboratory, received the award for his work on the Magnetic Reconnection Experiment (MRX) at PPPL.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000