A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

Versatile physics leader Stefan Gerhardt elected an APS fellow

Stefan Gerhardt, who heads research operations and serves as deputy director of the recovery project for the flagship fusion facility at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been elected a 2019 American Physical Society (APS) Fellow. The APS annually recognizes as fellows no more than one-half of one percent of its more than 55,000 worldwide members.

Today’s forecast: How to predict crucial plasma pressure in future fusion facilities

A key requirement for future facilities that aim to capture and control on Earth the fusion energy that drives the sun and stars is accurate predictions of the pressure of the plasma — the hot, charged gas that fuels fusion reactions inside doughnut-shaped tokamaks that house the reactions. Central to these predictions is forecasting the pressure that the scrape-off layer, the thin strip of gas at the edge of the plasma, exerts on the divertor — the device that exhausts waste heat from fusion reactions.

Look, up in the sky! Interns develop a device that levitates droplets of water

Among the many projects that interns worked on this summer at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) is an acoustical levitator that causes droplets of water to levitate in mid-air so their interaction with plasma can be examined. Assembled by Remy Plattiers, now a freshman at the University of New Haven, the device suspends droplets with sound waves whose high frequency is hard to hear.

Really fun

New national facility will explore low-temperature plasma, a dynamic source of innovation for modern technologies

Low-temperature plasma, a rapidly expanding source of innovation in fields ranging from electronics to health care to space exploration, is a highly complex state of matter.  So complex that the Princeton Plasma Physics Laboratory (PPPL) has teamed with Princeton University to become home to a collaborative facility open to researchers from across the country to advance the understanding and control of this dynamic physical state.

Extensive resources

New national facility will explore low-temperature plasma, a dynamic source of innovation for modern technologies

Low-temperature plasma, a rapidly expanding source of innovation in fields ranging from electronics to health care to space exploration, is a highly complex state of matter.  So complex that the Princeton Plasma Physics Laboratory (PPPL) has teamed with Princeton University to become home to a collaborative facility open to researchers from across the country to advance the understanding and control of this dynamic physical state.

Extensive resources

Students in Graduate Summer School focus on plasma physics

Lightning has struck twice, and in the same place. For one week in August for the second consecutive year, a cohort of graduate physics students came to Princeton for the annual Graduate Summer School (GSS) in Plasma Physics at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). During the week of Aug. 12, 31 students learned about low-temperature plasma, computational methods, turbulence, and plasma diagnostics in courses that were also live-streamed over the internet.

New technique could streamline design of intricate fusion device

Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy.

New technique could streamline design of intricate fusion device

Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000