A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

New testing of model improves confidence in the performance of ITER

Scientists seeking to bring fusion — the power that drives the sun and stars — down to Earth must first make the state of matter called plasma superhot enough to sustain fusion reactions. That calls for heating the plasma to many times the temperature of the core of the sun. In ITER, the international fusion facility being built in France to demonstrate the feasibility of fusion power, the device will heat both the free electrons and the atomic nuclei — or ions — that make up the plasma.

William Tang wins 2018 Global Impact Award to advance development of AI software to help create “a star on earth”

Physicist William Tang has won a highly competitive $100,000 Global Impact Award from NVIDIA Corp., the leading producer of graphics processing units (GPUs) for carrying out artificial intelligence (AI) computing.  This award was one of two presented at the NVIDIA national GPU technology conference held March 26-29 in San Jose, California.

William Tang wins 2018 Global Impact Award to advance development of AI software to help create “a star on earth”

Physicist William Tang has won a highly competitive $100,000 Global Impact Award from NVIDIA Corp., the leading producer of graphics processing units (GPUs) for carrying out artificial intelligence (AI) computing.  This award was one of two presented at the NVIDIA national GPU technology conference held March 26-29 in San Jose, California.

PPPL-led research enhances performance of Germany’s new fusion device

A team of U.S. and German scientists has used a system of large magnetic “trim” coils designed and delivered by the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) to achieve high performance in the latest round of experiments on the Wendelstein 7-X (W7-X) stellarator. The German machine, the world’s largest and most advanced stellarator, is being used to explore the scientific basis for fusion energy and test the suitability of the stellarator design for future fusion power plants.

PPPL-led research enhances performance of Germany’s new fusion device

A team of U.S. and German scientists has used a system of large magnetic “trim” coils designed and delivered by the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) to achieve high performance in the latest round of experiments on the Wendelstein 7-X (W7-X) stellarator. The German machine, the world’s largest and most advanced stellarator, is being used to explore the scientific basis for fusion energy and test the suitability of the stellarator design for future fusion power plants.

Chirping is welcome in birds but not in fusion devices – scientists show that weak turbulence makes chirping more likely

Birds do it and so do doughnut-shaped fusion facilities called “tokamaks.” But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect — is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.  Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

Chirping is welcome in birds but not in fusion devices – scientists show that weak turbulence makes chirping more likely

Birds do it and so do doughnut-shaped fusion facilities called “tokamaks.” But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect — is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.  Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

Powerful device to study puzzling process

A millisecond burst of light on a computer monitor signaled production of the first plasma in a powerful new device for advancing research into magnetic reconnection — a critical but little understood process that occurs throughout the universe. The first plasma, a milestone event signaling the beginning of research capabilities, was captured on camera on Sunday, March 4, at 8:13 p.m. at Jadwin Hall at Princeton University, and marked completion of the four-year construction of the device, the Facility for Laboratory Reconnection Experiment (FLARE).

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000