A Collaborative National Center for Fusion & Plasma Research

Plasma diagnostics

Subscribe to RSS - Plasma diagnostics

The tools used by researchers to assess the characteristics of superheated and electrically charged gases known as plasmas.

Tracking major sources of energy loss in compact fusion facilities

A key obstacle to controlling on Earth the fusion that powers the sun and stars is leakage of energy and particles from plasma, the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), physicists have been focusing on validating computer simulations that forecast energy losses caused by turbulent transport during fusion experiments.

Tracking major sources of energy loss in compact fusion facilities

A key obstacle to controlling on Earth the fusion that powers the sun and stars is leakage of energy and particles from plasma, the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), physicists have been focusing on validating computer simulations that forecast energy losses caused by turbulent transport during fusion experiments.

New technique merging sound and math could help prevent plasma disruptions in fusion facilities

Scientists have created a novel method for measuring the stability of a soup of ultra-hot and electrically charged atomic particles, or plasma, in fusion facilities called “tokamaks.” Involving an innovative use of a mathematical tool, the method might lead to a technique for stabilizing plasma and making fusion reactions more efficient.

New technique merging sound and math could help prevent plasma disruptions in fusion facilities

Scientists have created a novel method for measuring the stability of a soup of ultra-hot and electrically charged atomic particles, or plasma, in fusion facilities called “tokamaks.” Involving an innovative use of a mathematical tool, the method might lead to a technique for stabilizing plasma and making fusion reactions more efficient.

Scientists improve ability to measure electrical properties of plasma

Any solid surface immersed within a plasma, including those in satellite engines and fusion reactors, is surrounded by a layer of electrical charge that determines the interaction between the surface and the plasma. Understanding the nature of this contact, which can affect the performance of the devices, often hinges on understanding how electrical charge is distributed around the surface. Now, recent research by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) indicates a way to more accurately measure these electrical properties.

Scientists improve ability to measure electrical properties of plasma

Any solid surface immersed within a plasma, including those in satellite engines and fusion reactors, is surrounded by a layer of electrical charge that determines the interaction between the surface and the plasma. Understanding the nature of this contact, which can affect the performance of the devices, often hinges on understanding how electrical charge is distributed around the surface. Now, recent research by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) indicates a way to more accurately measure these electrical properties.

PPPL physicists to create new X-ray diagnostics for the WEST fusion device in France

A team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a DOE Office of Science award to develop new X-ray diagnostics for WEST — the Tungsten (W) Environment in Steady-state Tokamak — in Cadarache, France. The three-year, $1-million award will support construction of two new devices at PPPL, plus collaboration with French scientists and deployment of a post-doctoral researcher to test the installed devices at CAE Laboratories, the home of the WEST facility.

PPPL physicists to create new X-ray diagnostics for the WEST fusion device in France

A team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a DOE Office of Science award to develop new X-ray diagnostics for WEST — the Tungsten (W) Environment in Steady-state Tokamak — in Cadarache, France. The three-year, $1-million award will support construction of two new devices at PPPL, plus collaboration with French scientists and deployment of a post-doctoral researcher to test the installed devices at CAE Laboratories, the home of the WEST facility. 

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000