A Collaborative National Center for Fusion & Plasma Research

Plasma diagnostics

Subscribe to RSS - Plasma diagnostics

The tools used by researchers to assess the characteristics of superheated and electrically charged gases known as plasmas.

Accomplished early career physicist is first recipient of fellowship that honors pioneering PPPL physicist Robert Ellis Jr.

An early career physicist with a strong background in plasma physics who is focused on laser-based diagnostics has been appointed to a fellowship that honors pioneering physicist Robert A. Ellis Jr. and is aimed at encouraging more diversity in plasma physics research at the Princeton Plasma Physics Laboratory (PPPL).

PPPL ramps up activities for diagnostics for ITER fusion experiment

The U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has launched engineering design activity on several plasma diagnostic systems for ITER, the international fusion experiment now under construction in France. When installed on the ITER tokamak, these diagnostics will allow scientists to make measurements needed to understand the behavior of the hot super-charged gas called plasma under fusion conditions in which ITER will produce for the first time a self-sustaining or burning plasma.  

PPPL ramps up activities for diagnostics for ITER fusion experiment

The U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has launched engineering design activity on several plasma diagnostic systems for ITER, the international fusion experiment now under construction in France. When installed on the ITER tokamak, these diagnostics will allow scientists to make measurements needed to understand the behavior of the hot super-charged gas called plasma under fusion conditions in which ITER will produce for the first time a self-sustaining or burning plasma.  

Ten not-to-be-missed PPPL stories from 2019 — plus a triple bonus!

Arms control robots, a new national facility, and accelerating the drive to bring the fusion energy that powers the sun and stars to Earth. These far-reaching achievements at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) made 2019 another remarkable year. Research at the only national laboratory devoted to fusion and plasma physics — the state of matter that makes up 99 percent of the visible universe — broke new ground in varied fields as vast as astrophysics and as tiny as nanotechnology.

Tracking major sources of energy loss in compact fusion facilities

A key obstacle to controlling on Earth the fusion that powers the sun and stars is leakage of energy and particles from plasma, the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), physicists have been focusing on validating computer simulations that forecast energy losses caused by turbulent transport during fusion experiments.

Tracking major sources of energy loss in compact fusion facilities

A key obstacle to controlling on Earth the fusion that powers the sun and stars is leakage of energy and particles from plasma, the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), physicists have been focusing on validating computer simulations that forecast energy losses caused by turbulent transport during fusion experiments.

New technique merging sound and math could help prevent plasma disruptions in fusion facilities

Scientists have created a novel method for measuring the stability of a soup of ultra-hot and electrically charged atomic particles, or plasma, in fusion facilities called “tokamaks.” Involving an innovative use of a mathematical tool, the method might lead to a technique for stabilizing plasma and making fusion reactions more efficient.

New technique merging sound and math could help prevent plasma disruptions in fusion facilities

Scientists have created a novel method for measuring the stability of a soup of ultra-hot and electrically charged atomic particles, or plasma, in fusion facilities called “tokamaks.” Involving an innovative use of a mathematical tool, the method might lead to a technique for stabilizing plasma and making fusion reactions more efficient.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000