A Collaborative National Center for Fusion & Plasma Research

Plasma diagnostics

Subscribe to RSS - Plasma diagnostics

The tools used by researchers to assess the characteristics of superheated and electrically charged gases known as plasmas.

Scientists improve ability to measure electrical properties of plasma

Any solid surface immersed within a plasma, including those in satellite engines and fusion reactors, is surrounded by a layer of electrical charge that determines the interaction between the surface and the plasma. Understanding the nature of this contact, which can affect the performance of the devices, often hinges on understanding how electrical charge is distributed around the surface. Now, recent research by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) indicates a way to more accurately measure these electrical properties.

Scientists improve ability to measure electrical properties of plasma

Any solid surface immersed within a plasma, including those in satellite engines and fusion reactors, is surrounded by a layer of electrical charge that determines the interaction between the surface and the plasma. Understanding the nature of this contact, which can affect the performance of the devices, often hinges on understanding how electrical charge is distributed around the surface. Now, recent research by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) indicates a way to more accurately measure these electrical properties.

PPPL physicists to create new X-ray diagnostics for the WEST fusion device in France

A team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a DOE Office of Science award to develop new X-ray diagnostics for WEST — the Tungsten (W) Environment in Steady-state Tokamak — in Cadarache, France. The three-year, $1-million award will support construction of two new devices at PPPL, plus collaboration with French scientists and deployment of a post-doctoral researcher to test the installed devices at CAE Laboratories, the home of the WEST facility.

PPPL physicists to create new X-ray diagnostics for the WEST fusion device in France

A team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a DOE Office of Science award to develop new X-ray diagnostics for WEST — the Tungsten (W) Environment in Steady-state Tokamak — in Cadarache, France. The three-year, $1-million award will support construction of two new devices at PPPL, plus collaboration with French scientists and deployment of a post-doctoral researcher to test the installed devices at CAE Laboratories, the home of the WEST facility. 

Two PPPL physicists, David Johnson and Charles Skinner, named ITER Scientist Fellows

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

Two PPPL physicists, David Johnson and Charles Skinner, named ITER Scientist Fellows

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

Artificial intelligence helps accelerate progress toward efficient fusion reactions

Before scientists can effectively capture and deploy fusion energy, they must learn to predict major disruptions that can halt fusion reactions and damage the walls of doughnut-shaped fusion devices called tokamaks. Timely prediction of disruptions, the sudden loss of control of the hot, charged plasma that fuels the reactions, will be vital to triggering steps to avoid or mitigate such large-scale events.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000