A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

COLLOQUIUM: New Horizons at Pluto

Pluto and its five known moons have been transformed from mysterious, barely resolved or unresolved points of light, only dimly viewed from very far away, to astonishing worlds of unimagined complexity by the recent visit of the small interplanetary probe called New Horizons. Pluto, with its icy plains, mountains, flowing glaciers, and hazy atmosphere, and Charon, only half as large but dramatically different, are revealed in amazing detail by the instruments on New Horizons.

COLLOQUIUM: Seeing the Big Bang More Clearly: The Evolution of Observational Techniques in CMB Studies

Since 2015 marks the fiftieth anniversary of the discovery of the cosmic microwave background (CMB), I will begin by analyzing the very early experiments that established the properties of the CMB.  What experimental problems did we face, and how did we overcome them?  As CMB measurements grew more sensitive, new sources of systematic error and new foregrounds emerged.  I'll describe the techniques CMB observers have evolved over the years to cope with them.


COLLOQUIUM: Toward a Better Understanding of the Solar Atmosphere: Combining Observations and Numerical Modeling

The study of the Sun, our nearest star, is making rapid progress, through a combination of a host of new space-based and ground-based observatories coming online and major advances in numerical simulations that incorporate increasingly complex physical mechanisms. I will provide an overview of some recent exciting discoveries that highlight the synergy between numerical modeling and observations with the  Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO) and Hinode spacecraft. Some of the topics I will discuss include: 1.

Physicist Masaaki Yamada wins the 2015 James Clerk Maxwell Prize in Plasma Physics

Masaaki Yamada, a Distinguished Laboratory Research Fellow at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has won the 2015 James Clerk Maxwell Prize in Plasma Physics. The award from the American Physical Society (APS) Division of Plasma Physics recognized Yamada for "fundamental experimental studies of magnetic reconnection relevant to space, astrophysical and fusion plasmas, and for pioneering contributions to the field of laboratory plasma astrophysics."

COLLOQUIUM: Reconnection at the Dayside Magnetopause from MMS

The NASA Magnetospheric Multiscale Mission was developed and launched on March 12, 2015 to conduct a definitive experiment on magnetic reconnection in the boundary regions of the Earth’s magnetosphere. The focus is on understanding phenomena in the reconnection diffusion region that cause solar-wind and magnetospheric magnetic fields to merge, thereby releasing magnetic energy and accelerating charged particles.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000