A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

Undergraduate students extoll benefits of national laboratory research internships in fusion and plasma science

They gathered in the lobby of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in dresses and suits, standing in front of posters showing computer-aided-design (CAD) drawings, mathematical equations, and line graphs, preparing to explain a summer of plasma physics research.

Energy Secretary Rick Perry cheers on fusion energy, science education at PPPL

The Princeton Plasma Physics Laboratory’s (PPPL) mission of doing research to develop fusion as a viable source of energy is vital to the future of the planet, U.S. Energy Secretary Rick Perry said during an Aug. 9 visit. 

“It’s important not just to PPPL, not just to the DOE (Department of Energy) but to the world,” Perry told staff members during an all-hands meeting. “If we’re able to deliver fusion energy to the world, we’re able to change the world forever.” 

Advances in plasma and fusion science are described in Quest, PPPL’s research magazine

From analyzing solar flares to pursuing “a star in a jar” to produce virtually limitless electric power, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed insights and discoveries over the past year that advance understanding of the universe and the prospect for safe, clean, and abundant energy for all humankind.

Advances in plasma and fusion science are described in Quest, PPPL’s research magazine

From analyzing solar flares to pursuing “a star in a jar” to produce virtually limitless electric power, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed insights and discoveries over the past year that advance understanding of the universe and the prospect for safe, clean, and abundant energy for all humankind.

Powerful device to study puzzling process

A millisecond burst of light on a computer monitor signaled production of the first plasma in a powerful new device for advancing research into magnetic reconnection — a critical but little understood process that occurs throughout the universe. The first plasma, a milestone event signaling the beginning of research capabilities, was captured on camera on Sunday, March 4, at 8:13 p.m. at Jadwin Hall at Princeton University, and marked completion of the four-year construction of the device, the Facility for Laboratory Reconnection Experiment (FLARE).

Plasma bubbles help trigger massive magnetic events in outer space

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered key conditions that give rise to fast magnetic reconnection, the process that triggers solar flares, auroras, and geomagnetic storms that can disrupt signal transmissions and other electrical activities, including cell phone service. The process occurs when the magnetic field lines in plasma, the hot, charged state of matter composed of free electrons and atomic nuclei, break apart and violently reconnect, releasing vast amounts of energy.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000