A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

Turbulence in space might solve outstanding astrophysical mystery

Contrary to what many people believe, outer space is not empty. In addition to an electrically charged soup of ions and electrons known as plasma, space is permeated by magnetic fields with a wide range of strengths. Astrophysicists have long wondered how those fields are produced, sustained, and magnified. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have shown that plasma turbulence might be responsible, providing a possible answer to what has been called one of the most important unsolved problems in plasma astrophysics.

Turbulence in space might solve outstanding astrophysical mystery

Contrary to what many people believe, outer space is not empty. In addition to an electrically charged soup of ions and electrons known as plasma, space is permeated by magnetic fields with a wide range of strengths. Astrophysicists have long wondered how those fields are produced, sustained, and magnified. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have shown that plasma turbulence might be responsible, providing a possible answer to what has been called one of the most important unsolved problems in plasma astrophysics.

Surprise finding: Discovering a previously unknown role for a source of magnetic fields

Magnetic forces ripple throughout the universe, from the fields surrounding planets to the gasses filling galaxies, and can be launched by a phenomenon called the Biermann battery effect. Now scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that this phenomenon may not only generate magnetic fields, but can sever them to trigger magnetic reconnection – a remarkable and surprising discovery.

Princeton Plasma Physics Laboratory designated an historic mechanical engineering site

The American Society of Mechanical Engineers (ASME) on Oct. 5 presented the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) with an engraved plaque designating the Laboratory an ASME historic mechanical engineering landmark for its achievements in the quest to develop magnetically controlled fusion energy. The ASME, which “promotes the art, science and practice of multidisciplinary engineering and allied sciences around the globe,” recognized  the Laboratory for its entire body of mechanical engineering achievements since 1951.

No longer whistling in the dark: Scientists uncover a little-understood source of waves generated throughout the universe

Magnetic reconnection, the snapping apart and violent reconnection of magnetic field lines in plasma — the state of matter composed of free electrons and atomic nuclei — occurs throughout the universe and can whip up space storms that disrupt cell phone service and knock out power grids. Now scientists at the U.S.

No longer whistling in the dark: Scientists uncover a little-understood source of waves generated throughout the universe

Magnetic reconnection, the snapping apart and violent reconnection of magnetic field lines in plasma — the state of matter composed of free electrons and atomic nuclei — occurs throughout the universe and can whip up space storms that disrupt cell phone service and knock out power grids. Now scientists at the U.S.

Undergraduate students extoll benefits of national laboratory research internships in fusion and plasma science

They gathered in the lobby of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in dresses and suits, standing in front of posters showing computer-aided-design (CAD) drawings, mathematical equations, and line graphs, preparing to explain a summer of plasma physics research.

Energy Secretary Rick Perry cheers on fusion energy, science education at PPPL

The Princeton Plasma Physics Laboratory’s (PPPL) mission of doing research to develop fusion as a viable source of energy is vital to the future of the planet, U.S. Energy Secretary Rick Perry said during an Aug. 9 visit. 

“It’s important not just to PPPL, not just to the DOE (Department of Energy) but to the world,” Perry told staff members during an all-hands meeting. “If we’re able to deliver fusion energy to the world, we’re able to change the world forever.” 

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000