A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

COLLOQUIUM: Laboratory Study of Magnetic Reconnection: Recent Discoveries on MRX

Magnetic reconnection is a phenomenon of nature in which magnetic field lines change their topology in plasma and convert magnetic energy to particles by acceleration and heating. It is one of the most fundamental processes at work in laboratory and astrophysical plasmas. Magnetic reconnection occurs everywhere: in solar flares; coronal mass ejections; the earth’s magnetosphere; in the star forming galaxies; and in plasma fusion devices.

COLLOQUIUM: "Laboratory Dynamos"

One of the most fundamental tenets of astrophysical plasma physics is that magnetic fields can be stretched and amplified by flowing plasmas. In the right geometry, this can even lead to the self-generation of magnetic fields from flow through the dynamo process, a positive feedback instability where seed magnetic fields are stretched and amplified by flow in such a way as to reinforce the initial seed. This happens only when plasma is highly conducting, fast flowing, and when the magnetic field is weak. Laboratory plasmas exploring this parameter regime are surprisingly rare.

COLLOQUIUM: The Alfvénic Motions of the Sun's Outer Atmosphere

In 2005 a novel imaging spectro-polarimeter, the Coronal Multi-channel Polarimeter (CoMP), was deployed to the Evans Facility in Sunspot, NM to measure the solar corona’s magnetic field. The design of the instrument permitted it to capture something quite unexpected – the ubiquitous Alfvénic motion of the coronal plasma. Shortly thereafter the NASA/JAXA Hinode mission observed the roots of the Alfvénic motion in the complex chromospheric boundary region between the Sun’s surface and the corona.

PPPL physicists win supercomputing time to simulate key energy and astrophysical phenomena

Three teams led by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have won major blocks of time on two of the world’s most powerful supercomputers. Two of the projects seek to advance the development of nuclear fusion as a clean and abundant source of energy by improving understanding of the superhot, electrically charged plasma gas that fuels fusion reactions.

COLLOQUIUM: Environmental Condensed Matter Physics

The physics of condensed matter provides a unique perspective on materials and systems of environmental relevance.   I discuss three ways in which concepts and methods of condensed matter physics bear upon the quest for a sustainable future.  Electronic devices made from metal oxides may enable new approaches to renewable energy, such as diodes that operate at optical frequencies to directly convert the electromagnetic field of sunlight to current.

"Coordinated Solar Energetic Events", Professor Alan M. Title, Lockheed Martin Advance Technology Center/Stanford University

The Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory with obtains  full disk images that span the temperature range from 6000 to 20,000,000K with  arcsecond resolution and a 12 second cadence. Because of the enhanced thermal and temporal coverage and the high dynamic range available with AIA, it has been able to discovery collective behavior associated with energeti solar events that are driven by the expansion of magnetic structures.

"The Voyager Mission to the Outer Planets and Interstellar Space", Dr. Alan C. Cummings, California Institute of Technology

Thirty-five years after their launches in 1977, the twin Voyager spacecraft have completed the Grand Tour of the outer planets and are now exploring the outer regions of the heliosphere. Soon they will be the first man-made objects to enter and explore interstellar space. Voyager 1 crossed the termination shock of the solar wind on December 16 2004 and Voyager 2 crossed the same structure on August 30 2007. The next destination is the heliopause, the boundary between plasma and magnetic fields from the Sun and plasma and magnetic fields from our galaxy.

Hantao Ji

Hantao Ji is a professor of Astrophysical Sciences at Princeton University and a Distinguished Research Fellow at PPPL. For more than 20 years he has been interested in the growing fields of plasma physics and astrophysics, and has dedicated his career to bringing them closer together. 


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000