A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

Stewart Prager

Stewart Prager was the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

Four scientists at PPPL awarded national and international honors

Institutions ranging from NASA to the Korean Physical Society have recently bestowed national and international honors on four scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The awards recognize a veteran and three early career physicists for their path-setting achievements in fusion and plasma science research. The honorees and their notable contributions:

Rajesh Maingi named Fellow of the American Nuclear Society

Four scientists at PPPL awarded national and international honors

Institutions ranging from NASA to the Korean Physical Society have recently bestowed national and international honors on four scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The awards recognize a veteran and three early career physicists for their path-setting achievements in fusion and plasma science research. The honorees and their notable contributions:

Rajesh Maingi named Fellow of the American Nuclear Society

Tied in knots: New insights into plasma behavior focus on twists and turns

Whether zipping through a star or a fusion device on Earth, the electrically charged particles that make up the fourth state of matter better known as plasma are bound to magnetic field lines like beads on a string. Unfortunately for plasma physicists who study this phenomenon, the magnetic field lines often lack simple shapes that equations can easily model. Often they twist and knot like pretzels. Sometimes, when the lines become particularly twisted, they snap apart and join back together, ejecting blobs of plasma and tremendous amounts of energy.

Tied in knots: New insights into plasma behavior focus on twists and turns

Whether zipping through a star or a fusion device on Earth, the electrically charged particles that make up the fourth state of matter better known as plasma are bound to magnetic field lines like beads on a string. Unfortunately for plasma physicists who study this phenomenon, the magnetic field lines often lack simple shapes that equations can easily model. Often they twist and knot like pretzels. Sometimes, when the lines become particularly twisted, they snap apart and join back together, ejecting blobs of plasma and tremendous amounts of energy.

Confirming a little-understood source of the process behind northern lights and the formation of stars

Fast magnetic reconnection, the rapid convergence, separation and explosive snapping together of magnetic field lines, gives rise to northern lights, solar flares and geomagnetic storms that can disrupt cell phone service and electric power grids. The phenomenon takes place in plasma, the state of matter composed of free electrons and atomic nuclei, or ions, that makes up 99 percent of the visible universe. But whether fast reconnection can occur in partially ionized plasma — plasma that includes atoms as well as free electrons and ions — is not well understood.

Confirming a little-understood source of the process behind northern lights and the formation of stars

Fast magnetic reconnection, the rapid convergence, separation and explosive snapping together of magnetic field lines, gives rise to northern lights, solar flares and geomagnetic storms that can disrupt cell phone service and electric power grids. The phenomenon takes place in plasma, the state of matter composed of free electrons and atomic nuclei, or ions, that makes up 99 percent of the visible universe. But whether fast reconnection can occur in partially ionized plasma — plasma that includes atoms as well as free electrons and ions — is not well understood.

Novel experiment validates a widely speculated and important mechanism during the formation of stars and planets

How have stars and planets developed from the clouds of dust and gas that once filled the cosmos? A novel experiment at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has demonstrated the validity of a widespread theory known as “magnetorotational instability,” or MRI, that seeks to explain the formation of heavenly bodies.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000