A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

Stewart Prager

Stewart Prager was the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

Exploration of the processes behind supernova shockwaves has won Will Fox, a physicist at the U.S. Department of Energy’s (DOE) Plasma Physics Laboratory (PPPL), the John Dawson Award for Excellence in Plasma Physics Research. The honor, awarded by the American Physical Society (APS), recognizes “a recent outstanding achievement in plasma physics research.” Fox shares this year’s award with 10 physicists in the U.S., Japan, and Britain.

Exciting progress

Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

Exploration of the processes behind supernova shockwaves has won Will Fox, a physicist at the U.S. Department of Energy’s (DOE) Plasma Physics Laboratory (PPPL), the John Dawson Award for Excellence in Plasma Physics Research. The honor, awarded by the American Physical Society (APS), recognizes “a recent outstanding achievement in plasma physics research.” Fox shares this year’s award with 10 physicists in the U.S., Japan, and Britain.

Exciting progress

Quest, PPPL’s annual research magazine, reports breakthroughs and discoveries during the past year

From fresh insight into the capture and control on Earth of fusion energy that drives the sun and stars, to the launch of pioneering new initiatives, groundbreaking research and discoveries have marked the past year at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The Laboratory has advanced on all fronts and is expanding into new ones, and Quest reports on all the excitement around these activities in the 2020 edition.

Highly productive

Quest, PPPL’s annual research magazine, reports breakthroughs and discoveries during the past year

From fresh insight into the capture and control on Earth of fusion energy that drives the sun and stars, to the launch of pioneering new initiatives, groundbreaking research and discoveries have marked the past year at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The Laboratory has advanced on all fronts and is expanding into new ones, and Quest reports on all the excitement around these activities in the 2020 edition.

Highly productive

Matthew Kunz, Princeton and PPPL astrophysicist, receives prestigious NSF dual-purpose award

Matthew Kunz, an assistant professor of astrophysical sciences at Princeton University and a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been awarded a National Science Foundation (NSF) five-year grant to research magnetic fields throughout the early universe and to establish a summer school on plasma physics aimed at attracting women and underrepresented minorities to the field.

New research deepens understanding of Earth’s interaction with the solar wind

As the Earth orbits the sun, it plows through a stream of fast-moving particles that can interfere with satellites and global positioning systems. Now, a team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University has reproduced a process that occurs in space to deepen understanding of what happens when the Earth encounters this solar wind.

New research deepens understanding of Earth’s interaction with the solar wind

As the Earth orbits the sun, it plows through a stream of fast-moving particles that can interfere with satellites and global positioning systems. Now, a team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University has reproduced a process that occurs in space to deepen understanding of what happens when the Earth encounters this solar wind.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000