A Collaborative National Center for Fusion & Plasma Research

NSTX-U

Subscribe to RSS - NSTX-U

The National Spherical Torus Experiment (NSTX), which underwent a $94 million upgrade, is being repaired. It will be the most powerful experimental fusion facility, or tokamak, of its type in the world when it is back in operation. Experiments will test the ability of the upgraded spherical facility to maintain a high-performance plasma under conditions of extreme heat and power. Results could strongly influence the design of future fusion reactors.

Batten down the hatches: Preventing heat leaks to help create a star on Earth

Creating a star on Earth requires a delicate balance between pumping enormous amounts of energy into plasma to make it hot enough for fusion to occur and preventing that heat from escaping. Now, physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have identified a method by which instabilities can be tamed and heat can be prevented from leaking from the plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Batten down the hatches: Preventing heat leaks to help create a star on Earth

Creating a star on Earth requires a delicate balance between pumping enormous amounts of energy into plasma to make it hot enough for fusion to occur and preventing that heat from escaping. Now, physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have identified a method by which instabilities can be tamed and heat can be prevented from leaking from the plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Early-career engineers learn about the wide variety of tasks in PPPL program

Nick Santoro is a military veteran who graduated from college in 2018 and was working as an engineer, but was looking for a job that would allow him to use more of the skills he learned in college. 

Bill Harris recently received his master’s degree in engineering after graduating from a five-year program and was looking for a job that would allow him to do hands-on work designing and building components. 

Blowing bubbles: PPPL scientist confirms novel way to launch and drive current in fusion plasmas

An obstacle to generating fusion reactions inside facilities called tokamaks is that producing the current in plasma that helps create confining magnetic fields happens in pulses. Such pulses, generated by an electromagnet that runs down the center of the tokamak, would make the steady-state creation of fusion energy difficult to achieve. To address the problem, physicists have developed a technique known as transient coaxial helicity injection (CHI) to create a current that is not pulsed.

Blowing bubbles: PPPL scientist confirms novel way to launch and drive current in fusion plasmas

An obstacle to generating fusion reactions inside facilities called tokamaks is that producing the current in plasma that helps create confining magnetic fields happens in pulses. Such pulses, generated by an electromagnet that runs down the center of the tokamak, would make the steady-state creation of fusion energy difficult to achieve. To address the problem, physicists have developed a technique known as transient coaxial helicity injection (CHI) to create a current that is not pulsed.

PPPL findings: From new fusion developments to surprises in astrophysics at global plasma physics gathering

More than 155 researchers and students — the largest delegation from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in recent years — attended the 61st annual meeting of the American Physical Society Division of Plasma Physics (APS-DPP) in Fort Lauderdale, Florida.

PPPL findings: From new fusion developments to surprises in astrophysics at global plasma physics gathering

More than 155 researchers and students — the largest delegation from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in recent years — attended the 61st annual meeting of the American Physical Society Division of Plasma Physics (APS-DPP) in Fort Lauderdale, Florida.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000