A Collaborative National Center for Fusion & Plasma Research

Magnetic reconnection

Subscribe to RSS - Magnetic reconnection

Magnetic reconnection (henceforth called "reconnection") refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma kinetic and thermal energy.

Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in “State of the Laboratory” address

The completion of the $94 million National Spherical Torus-Upgrade (NSTX-U) will usher in a decade of research that will lead to vital results for the international and national fusion programs and could lead the way to a next-step fusion facility, Princeton Plasma Physics Laboratory Director Stewart Prager told staff members in his annual “State of the Laboratory” address on Oct. 5.

Physicist Masaaki Yamada wins the 2015 James Clerk Maxwell Prize in Plasma Physics

Masaaki Yamada, a Distinguished Laboratory Research Fellow at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has won the 2015 James Clerk Maxwell Prize in Plasma Physics. The award from the American Physical Society (APS) Division of Plasma Physics recognized Yamada for "fundamental experimental studies of magnetic reconnection relevant to space, astrophysical and fusion plasmas, and for pioneering contributions to the field of laboratory plasma astrophysics."

COLLOQUIUM: Reconnection at the Dayside Magnetopause from MMS

The NASA Magnetospheric Multiscale Mission was developed and launched on March 12, 2015 to conduct a definitive experiment on magnetic reconnection in the boundary regions of the Earth’s magnetosphere. The focus is on understanding phenomena in the reconnection diffusion region that cause solar-wind and magnetospheric magnetic fields to merge, thereby releasing magnetic energy and accelerating charged particles.

PPPL data may play role in first NASA space probe dedicated to magnetic reconnection


At 10:44 p.m. on Thursday, March 12, NASA launched the Magnetospheric Multiscale mission (MMS), a set of four spacecraft that will study the magnetic fields surrounding Earth. Sent into space aboard an Atlas V rocket from Cape Canaveral, the craft mark the first NASA mission dedicated to investigating magnetic reconnection, a mysterious phenomenon that gives rise to the northern lights, solar flares and geomagnetic storms that can disrupt cell phone service, black out power grids and damage orbiting satellites.

PPPL researchers present cutting edge results at APS Plasma Physics Conference

Some 135 researchers, graduate students, and staff members from PPPL joined 1,500 research scientists from around the world at the 56th annual meeting of the American Physical Society Division of Plasma Physics Conference from Oct. 27 to Oct. 31 in New Orleans. Topics in the sessions ranged from waves in plasma to the physics of ITER, the international physics experiment in Cadarache, France; to women in plasma physics. Dozens of PPPL scientists presented the results of their cutting-edge research into magnetic fusion and plasma science.

PPPL scientists take key step toward solving a major astrophysical mystery

Magnetic reconnection can trigger geomagnetic storms that disrupt cell phone service, damage satellites and blackout power grids. But how reconnection, in which the magnetic field lines in plasma snap apart and violently reconnect, transforms magnetic energy into explosive particle energy remains a major unsolved problem in plasma astrophysics. Magnetic field lines represent the strength and direction of magnetic fields.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000