A Collaborative National Center for Fusion & Plasma Research


Subscribe to RSS - Lithium

Nearly everybody knows about lithium – a light, silvery alkali metal – used in rechargeable batteries powering everything from laptops to hybrid cars. What  may not be so well known is the fact that researchers hoping to harness the energy released in fusion reactions also have used lithium to coat the walls of donut-shaped tokamak reactors. Lithium, it turns out, may help the plasmas fueling fusion reactions to retain heat for longer periods of time. This could improve the chances of producing useful energy from fusion.

PPPL successfully tests system for mitigating instabilities called “ELMs”

PPPL has successfully tested a Laboratory-designed device to be used to diminish the size of instabilities known as “edge localized modes (ELMs)” on the DIII–D tokamak that General Atomics operates for the U.S. Department of Energy in San Diego. Such instabilities can damage the interior of fusion facilities.

The PPPL device injects granular lithium particles into tokamak plasmas to increase the frequency of the ELMs. The method aims to make the ELMs smaller and reduce the amount of heat that strikes the divertor that exhausts heat in fusion facilities.

PPPL lends General Electric a hand in developing an advanced power switch

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are assisting General Electric Co. in developing an electrical switch that could help lower utility bills. The advanced switch “could contribute to a smarter, more advanced, more reliable, and more secure electric grid,” according to the DOE’s Advanced Research Projects Agency-Energy (ARPA-E), which is funding the GE project.

COLLOQUIUM: The Lithium Tokamak eXperiment (LTX)

The Lithium Tokamak eXperiment (LTX) will be discussed in the context of a more general program goal - to develop a compact realization of a tokamak fusion reactor. The general requirements for more compact tokamak reactors will be briefly discussed. The LTX project can investigate some, but not all, of these requirements, on a small scale. Recent results from LTX will be presented. Finally, the development of a toroidal system to test flowing liquid lithium walls, aimed at eventual implementation in a compact D-T tokamak, will be discussed.

Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science

Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science—two topics of vital interest to the United States and the world.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn 

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000