A Collaborative National Center for Fusion & Plasma Research

Laser diagnostics

Subscribe to RSS - Laser diagnostics

The Multi-Point Thomson Scattering (MPTS) diagnostic system has been providing time dependent Te and ne profile measurements on NSTX for ten years.

COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility

The Inertial Confinement Fusion (ICF) Program is conducting experiments at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yield/input laser energy >1). To do this the NIF laser delivers up to ~ 2 MJ of energy to a hohlraum (cylindrical cavity) which generates x-rays that implode a ~2 mm diameter spherical capsule filled with a solid layer of cryogenic deuterium-tritium (DT) fuel.

Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science

Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science—two topics of vital interest to the United States and the world.

Ahmed Diallo wins DOE Early Career Research Program funding

Physicist Ahmed Diallo of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a highly competitive Early Career Research Program grant sponsored by the DOE’s Office of Science. His $500,000 per year award, which can be renewed for up to five years, will fund research into understandingand controlling the volatile edge of the superhot, charged plasma gas that fuels fusion reactions in devices called tokamaks.

Phil Heitzenroeder named winner of the 2013 Fusion Technology Award

Phil Heitzenroeder, who leads the Mechanical Engineering Division at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) and whose advice is sought by engineers around the world, has won the 2013 Fusion Technology Award.  The high honor from the Nuclear and Plasma Sciences Society of the Institute of Electrical and Electronics Engineers (IEEE) recognizes outstanding contributions to research and development in the field of fusion technology.

US ITER is a strong contributor in plan to enhance international sharing of prime ITER real estate

When the ITER experimental fusion reactor begins operation in the 2020s, over 40 diagnostic tools will provide essential data to researchers seeking to understand plasma behavior and optimize fusion performance. But before the ITER tokamak is built, researchers need to determine an efficient way of fitting all of these tools into a limited number of shielded ports that will protect the delicate diagnostic hardware and other parts of the machine from neutron flux and intense heat.

Ahmed Diallo

Ahmed Diallo is leader of the pedestal structure and control topical science group of the National Spherical Torus Experiment-Upgrade (NSTX-U) and is a recipient of a DOE Early Career award. He is developing a fast burst laser system to investigate the dynamics of the pedestal as well as to control it. He has contributed to the upgrade of the Thomson scattering diagnostic system in preparation for the NSTX-U, and has participated in the operation of the NSTX and the Thomson scattering system prior to their upgrades.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn 

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000