A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

Team led by PPPL wins major time on supercomputers to study the complex edge of fusion plasmas

he U.S. Department of Energy (DOE) has awarded major computer hours on three leading supercomputers, including the world’s fastest, to a team led by C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL). The team is addressing issues that must be resolved for successful operation of ITER, the international experiment under construction in France to demonstrate the feasibility of producing fusion energy — the power that drives the sun and stars — in a magnetically controlled fusion facility called a “tokamak.”

Team led by PPPL wins major time on supercomputers to study the complex edge of fusion plasmas

The U.S. Department of Energy (DOE) has awarded major computer hours on three leading supercomputers, including the world’s fastest, to a team led by C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL). The team is addressing issues that must be resolved for successful operation of ITER, the international experiment under construction in France to demonstrate the feasibility of producing fusion energy — the power that drives the sun and stars — in a magnetically controlled fusion facility called a “tokamak.”

From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering

More than 135 researchers and students from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) presented their latest findings at the 60th annual meeting of the American Physical Society Division of Plasma Physics — a worldwide gathering focused on fundamental plasma science research and discoveries. Some 1,700 participants from more than two dozen countries joined the November 5-to-9 event in Portland, Oregon, presenting posters and talks on topics ranging from astrophysical plasmas to nanotechnology to magnetic confinement fusion experiments.

Discovered: Optimal magnetic fields for suppressing instabilities in tokamaks

Fusion, the power that drives the sun and stars, produces massive amounts of energy. Scientists here on Earth seek to replicate this process, which merges light elements in the form of hot, charged plasma composed of free electrons and atomic nuclei, to create a virtually inexhaustible supply of power to generate electricity in what may be called a “star in a jar.”

Artificial intelligence project to help bring the power of the sun to Earth is picked for first U.S. exascale system

To capture and control the process of fusion that powers the sun and stars in facilities on Earth called tokamaks, scientists must confront disruptions that can halt the reactions and damage the doughnut-shaped devices.  Now an artificial intelligence system under development at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University to predict and tame such disruptions has been selected as an Aurora Early Science project by the Argonne Leadership Computing Facility, a DOE Office of Science User Facility.

Artificial intelligence project to help bring the power of the sun to Earth is picked for first U.S. exascale system

To capture and control the process of fusion that powers the sun and stars in facilities on Earth called tokamaks, scientists must confront disruptions that can halt the reactions and damage the doughnut-shaped devices.  Now an artificial intelligence system under development at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University to predict and tame such disruptions has been selected as an Aurora Early Science project by the Argonne Leadership Computing Facility, a DOE Office of Science User Facility.

Energy Secretary Rick Perry cheers on fusion energy, science education at PPPL

The Princeton Plasma Physics Laboratory’s (PPPL) mission of doing research to develop fusion as a viable source of energy is vital to the future of the planet, U.S. Energy Secretary Rick Perry said during an Aug. 9 visit. 

“It’s important not just to PPPL, not just to the DOE (Department of Energy) but to the world,” Perry told staff members during an all-hands meeting. “If we’re able to deliver fusion energy to the world, we’re able to change the world forever.” 

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000