A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

Chirping is welcome in birds but not in fusion devices – scientists show that weak turbulence makes chirping more likely

Birds do it and so do doughnut-shaped fusion facilities called “tokamaks.” But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect — is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.  Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

Chirping is welcome in birds but not in fusion devices – scientists show that weak turbulence makes chirping more likely

Birds do it and so do doughnut-shaped fusion facilities called “tokamaks.” But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect — is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.  Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Two PPPL physicists, David Johnson and Charles Skinner, named ITER Scientist Fellows

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

Two PPPL physicists, David Johnson and Charles Skinner, named ITER Scientist Fellows

David Johnson and Charles Skinner, principal research physicists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have been appointed to three-year terms as ITER Scientist Fellows. They will join a network of internationally recognized researchers who will consult with ITER, the international fusion experiment under construction in France, on plans and components for the project, which is designed to demonstrate the practicality of fusion energy.

Ten stories in 2017 you may have missed, plus a bonus

Throughout 2017 researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have produced new insights into the science of fusion energy that powers the sun and stars and the physics of plasma, the hot, charged state of matter that consists of electrons and atomic nuclei, or ions, and makes up 99 percent of the visible universe. The research advances the development of fusion as a safe, clean and plentiful source of power, produced in doughnut-shaped facilities called tokamaks, and explores the diverse aspects and applications of plasma.

Artificial intelligence helps accelerate progress toward efficient fusion reactions

Before scientists can effectively capture and deploy fusion energy, they must learn to predict major disruptions that can halt fusion reactions and damage the walls of doughnut-shaped fusion devices called tokamaks. Timely prediction of disruptions, the sudden loss of control of the hot, charged plasma that fuels the reactions, will be vital to triggering steps to avoid or mitigate such large-scale events.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000