A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

Physicists improve understanding of heat and particle flow in the edge of a fusion device

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered valuable information about how electrically charged gas known as “plasma” flows at the edge inside doughnut-shaped fusion devices called “tokamaks.” The findings mark an encouraging sign for the development of machines to produce fusion energy for generating electricity without creating long-term hazardous waste.

Ten PPPL stories you may have missed from 2018 — plus a special bonus

From new insights into the control of nuclear fusion to improved understanding of the fabrication of material thousands of time thinner than a human hair, the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) achieved wide-ranging advances in 2018. Research at the Laboratory focuses on the physics of plasma, the state of matter composed of free electrons and atomic nuclei that fuels the fusion reactions that light the sun and stars and underlies fundamental processes throughout the cosmos.

Scientists inch closer to fusion energy with discovery of a process that stabilizes plasmas

Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous.

Scientists inch closer to fusion energy with discovery of a process that stabilizes plasmas

Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous.

Team led by PPPL wins major time on supercomputers to study the complex edge of fusion plasmas

he U.S. Department of Energy (DOE) has awarded major computer hours on three leading supercomputers, including the world’s fastest, to a team led by C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL). The team is addressing issues that must be resolved for successful operation of ITER, the international experiment under construction in France to demonstrate the feasibility of producing fusion energy — the power that drives the sun and stars — in a magnetically controlled fusion facility called a “tokamak.”

Team led by PPPL wins major time on supercomputers to study the complex edge of fusion plasmas

The U.S. Department of Energy (DOE) has awarded major computer hours on three leading supercomputers, including the world’s fastest, to a team led by C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL). The team is addressing issues that must be resolved for successful operation of ITER, the international experiment under construction in France to demonstrate the feasibility of producing fusion energy — the power that drives the sun and stars — in a magnetically controlled fusion facility called a “tokamak.”

From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering

More than 135 researchers and students from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) presented their latest findings at the 60th annual meeting of the American Physical Society Division of Plasma Physics — a worldwide gathering focused on fundamental plasma science research and discoveries. Some 1,700 participants from more than two dozen countries joined the November 5-to-9 event in Portland, Oregon, presenting posters and talks on topics ranging from astrophysical plasmas to nanotechnology to magnetic confinement fusion experiments.

Discovered: Optimal magnetic fields for suppressing instabilities in tokamaks

Fusion, the power that drives the sun and stars, produces massive amounts of energy. Scientists here on Earth seek to replicate this process, which merges light elements in the form of hot, charged plasma composed of free electrons and atomic nuclei, to create a virtually inexhaustible supply of power to generate electricity in what may be called a “star in a jar.”

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000