A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

New testing of model improves confidence in the performance of ITER

Scientists seeking to bring fusion — the power that drives the sun and stars — down to Earth must first make the state of matter called plasma superhot enough to sustain fusion reactions. That calls for heating the plasma to many times the temperature of the core of the sun. In ITER, the international fusion facility being built in France to demonstrate the feasibility of fusion power, the device will heat both the free electrons and the atomic nuclei — or ions — that make up the plasma.

New testing of model improves confidence in the performance of ITER

Scientists seeking to bring fusion — the power that drives the sun and stars — down to Earth must first make the state of matter called plasma superhot enough to sustain fusion reactions. That calls for heating the plasma to many times the temperature of the core of the sun. In ITER, the international fusion facility being built in France to demonstrate the feasibility of fusion power, the device will heat both the free electrons and the atomic nuclei — or ions — that make up the plasma.

William Tang wins 2018 Global Impact Award to advance development of AI software to help create “a star on earth”

Physicist William Tang has won a highly competitive $100,000 Global Impact Award from NVIDIA Corp., the leading producer of graphics processing units (GPUs) for carrying out artificial intelligence (AI) computing.  This award was one of two presented at the NVIDIA national GPU technology conference held March 26-29 in San Jose, California.

William Tang wins 2018 Global Impact Award to advance development of AI software to help create “a star on earth”

Physicist William Tang has won a highly competitive $100,000 Global Impact Award from NVIDIA Corp., the leading producer of graphics processing units (GPUs) for carrying out artificial intelligence (AI) computing.  This award was one of two presented at the NVIDIA national GPU technology conference held March 26-29 in San Jose, California.

Chirping is welcome in birds but not in fusion devices – scientists show that weak turbulence makes chirping more likely

Birds do it and so do doughnut-shaped fusion facilities called “tokamaks.” But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect — is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.  Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

Chirping is welcome in birds but not in fusion devices – scientists show that weak turbulence makes chirping more likely

Birds do it and so do doughnut-shaped fusion facilities called “tokamaks.” But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect — is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.  Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000