A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

A landmark plan for realizing fusion energy and advancing plasma science

Creating and controlling on Earth the fusion energy that powers the sun and stars is a key goal of scientists around the world. Production of this safe, clean and limitless energy could generate electricity for all humanity, and the possibility is growing closer to reality. Now a landmark report released this week by the American Physical Society Division of Plasma Physics Community Planning Process proposes immediate steps for the United States to take to accelerate U.S.

A landmark plan for realizing fusion energy and advancing plasma science

Creating and controlling on Earth the fusion energy that powers the sun and stars is a key goal of scientists around the world. Production of this safe, clean and limitless energy could generate electricity for all humanity, and the possibility is growing closer to reality. Now a landmark report released this week by the American Physical Society Division of Plasma Physics Community Planning Process proposes immediate steps for the United States to take to accelerate U.S.

Artificial intelligence helps prevent disruptions in fusion devices

An international team of scientists led by a graduate student at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has demonstrated the use of Artificial Intelligence (AI), the same computing concept that will empower self-driving cars, to predict and avoid disruptions — the sudden release of energy stored in the plasma that fuels fusion reactions  — that can halt the reactions and severely damage fusion facilities.

Risk of disruptions

Feeding fusion: hydrogen ice pellets prove effective for fueling fusion plasmas

Researchers have found that injecting pellets of hydrogen ice rather than puffing hydrogen gas improves fusion performanceat the DIII-D National Fusion Facility, which General Atomics operates for the U.S. Department of Energy (DOE). The studies by physicists based at DOE’s Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL) compared the two methods, looking ahead to the fueling that will be used in ITER, the international fusion experiment under construction in France.

Improve the temperature

New twist in artificial intelligence could enhance the prediction of fusion disruptions

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have used Artificial Intelligence (AI) to create an innovative technique to improve the prediction of disruptions in fusion energy devices — a grand challenge in the effort to capture on Earth the fusion reactions that power the sun and stars.

The outlook for harnessing on Earth the fusion that powers the sun and stars

What does the future hold for the development of fusion energy as a safe, clean and virtually limitless source of power to generate electricity? To find out, the Andlinger Center for Energy and Environment at Princeton University spoke with Steve Cowley, director of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) and Princeton University professor of astrophysical sciences, and Egemen Kolemen, a PPPL physicist and assistant professor of mechanical and aerospace engineering and the Andlinger Center.

Team led by PPPL wins major computer time to help capture on Earth the fusion that powers the sun and stars

Researchers led by C.S. Chang of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have been awarded major supercomputer time to address key issues for ITER, the international experiment under construction in France to demonstrate the practicality of fusion energy. The award, from the DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, renews the third and final year of the team’s supercomputer allocation for the current round.

Among the largest awards

Team led by PPPL wins major computer time to help capture on Earth the fusion that powers the sun and stars

Researchers led by C.S. Chang of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have been awarded major supercomputer time to address key issues for ITER, the international experiment under construction in France to demonstrate the practicality of fusion energy. The award, from the DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, renews the third and final year of the team’s supercomputer allocation for the current round.

Among the largest awards

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000