A Collaborative National Center for Fusion & Plasma Research

International collaborations

Subscribe to RSS - International collaborations

PPPL collaborates in fusion experiments conducted by research institutions around the world. Such collaborations include supplying diagnostic equipment to ITER, a joint venture of the European Union, the United States and five other countries that is under construction in the south of France to demonstrate the feasibility of fusion power.

Ten stories in 2017 you may have missed, plus a bonus

Throughout 2017 researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have produced new insights into the science of fusion energy that powers the sun and stars and the physics of plasma, the hot, charged state of matter that consists of electrons and atomic nuclei, or ions, and makes up 99 percent of the visible universe. The research advances the development of fusion as a safe, clean and plentiful source of power, produced in doughnut-shaped facilities called tokamaks, and explores the diverse aspects and applications of plasma.

Reaching new heights: Physicists improve the vertical stability of superconducting Korean fusion device

A major challenge facing the development of fusion energy is maintaining the ultra-hot plasma that fuels fusion reactions in a steady state, or sustainable, form using superconducting magnetic coils to avoid the tremendous power requirement of copper coils. While superconductors can allow a fusion reactor to operate indefinitely, controlling the plasma with superconductors presents a challenge because engineering constraints limit how quickly such magnetic coils can adjust when compared to copper coils that do not have the same constraints.

Innovative design using loops of liquid metal can improve future fusion power plants, scientists say

Researchers led by the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have proposed an innovative design to improve the ability of future fusion power plants to generate safe, clean and abundant energy in a steady state, or constant, manner. The design uses loops of liquid lithium to clean and recycle the tritium, the radioactive hydrogen isotope that fuels fusion reactions, and to protect the divertor plates from intense exhaust heat from the tokamak that contains the reactions.

PPPL and Max Planck physicists reveal experimental verification of a key source of fast reconnection of magnetic fields

Magnetic reconnection, a universal process that triggers solar flares and northern lights and can disrupt cell phone service and fusion experiments, occurs much faster than theory says that it should. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Germany’s Max Planck Institute of Plasma Physics have discovered a source of the speed-up in a common form of reconnection. Their findings could lead to more accurate predictions of damaging space weather and improved fusion experiments.

PPPL and Max Planck physicists reveal experimental verification of a key source of fast reconnection of magnetic fields

Magnetic reconnection, a universal process that triggers solar flares and northern lights and can disrupt cell phone service and fusion experiments, occurs much faster than theory says that it should. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Germany’s Max Planck Institute of Plasma Physics have discovered a source of the speed-up in a common form of reconnection. Their findings could lead to more accurate predictions of damaging space weather and improved fusion experiments.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000