A Collaborative National Center for Fusion & Plasma Research

Inertial confinement fusion

Subscribe to RSS - Inertial confinement fusion

An experimental process that uses lasers to compress plasma to sufficiently high temperatures and densities for fusion to occur. Such experiments are carried out in places such as the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, California.

Stewart Prager

Stewart Prager was the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

Doctoral graduate Yuan Shi wins 2020 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award

Physicist Yuan Shi, who received his doctorate from the Princeton Program in Plasma Physics in 2018, has won the prestigious 2020 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award presented by the American Physical Society (APS). The award recognizes “exceptional young scientists who have performed original doctoral thesis research of outstanding scientific quality and achievement in the area of plasma physics.” 

Seth Davidovits wins 2018 Marshall N. Rosenbluth dissertation award

Seth Davidovits, a 2017 graduate of the Program in Plasma Physics in the Princeton University Department of Astrophysical Sciences, has won the 2018 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award presented by the American Physical Society (APS). The award, named for distinguished plasma physicist Marshall Rosenbluth, whose career included 13 years at the U.S.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

PPPL to design a high-resolution diagnostic system for the National Ignition Facility

Two U.S. Department of Energy (DOE) laboratories working on very different types of fusion experiments have begun a novel collaboration. Under the arrangement, the DOE’s Princeton Plasma Physics Laboratory (PPPL) will design a diagnostic system to provide high-resolution analysis of research on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). This work is supported by the DOE Office of Science and LLNL.

COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility

The Inertial Confinement Fusion (ICF) Program is conducting experiments at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yield/input laser energy >1). To do this the NIF laser delivers up to ~ 2 MJ of energy to a hohlraum (cylindrical cavity) which generates x-rays that implode a ~2 mm diameter spherical capsule filled with a solid layer of cryogenic deuterium-tritium (DT) fuel.

Fusion through the eyes of a veteran science journalist

Author Daniel Clery recently published “A Piece of the Sun,” a 320-page narrative of the history of fusion research and the personalities who have devoted their careers to it. Clery is a United Kingdom-based reporter for Science magazine who holds a bachelor’s degree in theoretical physics from York University and has covered fusion for more than a decade. While hardly an uncritical flag-waver for fusion, he recognizes its vast potential. He discussed his new book and the future of fusion with PPPL Science Writer John Greenwald.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000