A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

Powder, not gas: A safer, more effective way to create a star on Earth

A major issue with operating ring-shaped fusion facilities known as tokamaks is keeping the plasma that fuels fusion reactions free of impurities that could reduce the efficiency of the reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that sprinkling a type of powder into the plasma could aid in harnessing the ultra-hot gas within a tokamak facility to produce heat to create electricity without producing greenhouse gases or long-term radioactive waste.

Batten down the hatches: Preventing heat leaks to help create a star on Earth

Creating a star on Earth requires a delicate balance between pumping enormous amounts of energy into plasma to make it hot enough for fusion to occur and preventing that heat from escaping. Now, physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have identified a method by which instabilities can be tamed and heat can be prevented from leaking from the plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Batten down the hatches: Preventing heat leaks to help create a star on Earth

Creating a star on Earth requires a delicate balance between pumping enormous amounts of energy into plasma to make it hot enough for fusion to occur and preventing that heat from escaping. Now, physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have identified a method by which instabilities can be tamed and heat can be prevented from leaking from the plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Blowing bubbles: PPPL scientist confirms novel way to launch and drive current in fusion plasmas

An obstacle to generating fusion reactions inside facilities called tokamaks is that producing the current in plasma that helps create confining magnetic fields happens in pulses. Such pulses, generated by an electromagnet that runs down the center of the tokamak, would make the steady-state creation of fusion energy difficult to achieve. To address the problem, physicists have developed a technique known as transient coaxial helicity injection (CHI) to create a current that is not pulsed.

Blowing bubbles: PPPL scientist confirms novel way to launch and drive current in fusion plasmas

An obstacle to generating fusion reactions inside facilities called tokamaks is that producing the current in plasma that helps create confining magnetic fields happens in pulses. Such pulses, generated by an electromagnet that runs down the center of the tokamak, would make the steady-state creation of fusion energy difficult to achieve. To address the problem, physicists have developed a technique known as transient coaxial helicity injection (CHI) to create a current that is not pulsed.

Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

The swirls created by milk poured into coffee or the shudders that can jolt airplanes in flight are examples of turbulence, the chaotic movement of matter found throughout nature. Turbulence also occurs within tokamaks, doughnut-shaped facilities that house the plasma that fuels fusion reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

The swirls created by milk poured into coffee or the shudders that can jolt airplanes in flight are examples of turbulence, the chaotic movement of matter found throughout nature. Turbulence also occurs within tokamaks, doughnut-shaped facilities that house the plasma that fuels fusion reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

New technique could streamline design of intricate fusion device

Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy.

New technique could streamline design of intricate fusion device

Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000