A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

PPPL physicists aim to unlock mysteries of fusion with Early Career Research awards

Physicists Dr. Nate Ferraro and Dr. Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have each won 2018 Early Career Research Program awards sponsored by the DOE Office of Science. The two five-year awards will fund PPPL research that could lead to development of the best designs for doughnut-shaped tokamaks and twisty stellarators — the main magnetic-bottles employed worldwide in the effort to produce virtually inexhaustible fusion power on Earth using the reactions that drive the sun and stars.

PPPL-led research enhances performance of Germany’s new fusion device

A team of U.S. and German scientists has used a system of large magnetic “trim” coils designed and delivered by the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) to achieve high performance in the latest round of experiments on the Wendelstein 7-X (W7-X) stellarator. The German machine, the world’s largest and most advanced stellarator, is being used to explore the scientific basis for fusion energy and test the suitability of the stellarator design for future fusion power plants.

PPPL-led research enhances performance of Germany’s new fusion device

A team of U.S. and German scientists has used a system of large magnetic “trim” coils designed and delivered by the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) to achieve high performance in the latest round of experiments on the Wendelstein 7-X (W7-X) stellarator. The German machine, the world’s largest and most advanced stellarator, is being used to explore the scientific basis for fusion energy and test the suitability of the stellarator design for future fusion power plants.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000