A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

The swirls created by milk poured into coffee or the shudders that can jolt airplanes in flight are examples of turbulence, the chaotic movement of matter found throughout nature. Turbulence also occurs within tokamaks, doughnut-shaped facilities that house the plasma that fuels fusion reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

The swirls created by milk poured into coffee or the shudders that can jolt airplanes in flight are examples of turbulence, the chaotic movement of matter found throughout nature. Turbulence also occurs within tokamaks, doughnut-shaped facilities that house the plasma that fuels fusion reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

New technique could streamline design of intricate fusion device

Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy.

New technique could streamline design of intricate fusion device

Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy.

Seeing more clearly: Revised computer code accurately models an instability in fusion plasmas

Subatomic particles zip around ring-shaped fusion machines known as tokamaks and sometimes merge, releasing large amounts of energy. But these particles — a soup of charged electrons and atomic nuclei, or ions, collectively known as plasma — can sometimes leak out of the magnetic fields that confine them inside tokamaks. The leakage cools the plasma, reducing the efficiency of the fusion reactions and damaging the machine. Now, physicists have confirmed that an updated computer code could help to predict and ultimately prevent such leaks from happening.

Tiny granules can help bring clean and abundant fusion power to Earth

Beryllium, a hard, silvery metal long used in X-ray machines and spacecraft, is finding a new role in the quest to bring the power that drives the sun and stars to Earth. Beryllium is one of the two main materials used for the wall in ITER, a multinational fusion facility under construction in France to demonstrate the practicality of fusion power. Now, physicists from the U.S.

Tiny granules can help bring clean and abundant fusion power to Earth

Beryllium, a hard, silvery metal long used in X-ray machines and spacecraft, is finding a new role in the quest to bring the power that drives the sun and stars to Earth. Beryllium is one of the two main materials used for the wall in ITER, a multinational fusion facility under construction in France to demonstrate the practicality of fusion power. Now, physicists from the U.S.

Ready, set, go: Scientists evaluate a novel technique for firing up the fuel that feeds fusion reactions

To capture and control on Earth the fusion reactions that drive the sun and stars, researchers must first turn room-temperature gas into the hot, charged plasma that fuels the reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists have conducted an analysis that confirms the effectiveness of a novel, non-standard way for starting up plasma in future compact fusion facilities.

Ready, set, go: Scientists evaluate a novel technique for firing up the fuel that feeds fusion reactions

To capture and control on Earth the fusion reactions that drive the sun and stars, researchers must first turn room-temperature gas into the hot, charged plasma that fuels the reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists have conducted an analysis that confirms the effectiveness of a novel, non-standard way for starting up plasma in future compact fusion facilities.

Speeding the development of fusion power to create unlimited energy on Earth

Can tokamak fusion facilities, the most widely used devices for harvesting on Earth the fusion reactions that power the sun and stars, be developed more quickly to produce safe, clean, and virtually limitless energy for generating electricity? Physicist Jon Menard of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has examined that question in a detailed look at the concept of a compact tokamak equipped with high temperature superconducting (HTS) magnets.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000