A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

Permanent magnets far stronger than those on refrigerator doors could be a solution for delivering fusion energy

Permanent magnets akin to those used on refrigerators could speed the development of fusion energy – the same energy produced by the sun and stars.

In principle, such magnets can greatly simplify the design and production of twisty fusion facilities called stellarators, according to scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute for Plasma Physics in Greifswald, Germany. PPPL founder Lyman Spitzer Jr. invented the stellarator in the early 1950s.

Design of the W7-X fusion device enables it to overcome obstacles, scientists find

A key hurdle facing fusion devices called stellarators — twisty facilities that seek to harness on Earth the fusion reactions that power the sun and stars — has been their limited ability to maintain the heat and performance of the plasma that fuels those reactions. Now collaborative research by scientists at the U.S.

Design of the W7-X fusion device enables it to overcome obstacles, scientists find

A key hurdle facing fusion devices called stellarators — twisty facilities that seek to harness on Earth the fusion reactions that power the sun and stars — has been their limited ability to maintain the heat and performance of the plasma that fuels those reactions. Now collaborative research by scientists at the U.S.

The outlook for harnessing on Earth the fusion that powers the sun and stars

What does the future hold for the development of fusion energy as a safe, clean and virtually limitless source of power to generate electricity? To find out, the Andlinger Center for Energy and Environment at Princeton University spoke with Steve Cowley, director of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) and Princeton University professor of astrophysical sciences, and Egemen Kolemen, a PPPL physicist and assistant professor of mechanical and aerospace engineering and the Andlinger Center.

Ten not-to-be-missed PPPL stories from 2019 — plus a triple bonus!

Arms control robots, a new national facility, and accelerating the drive to bring the fusion energy that powers the sun and stars to Earth. These far-reaching achievements at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) made 2019 another remarkable year. Research at the only national laboratory devoted to fusion and plasma physics — the state of matter that makes up 99 percent of the visible universe — broke new ground in varied fields as vast as astrophysics and as tiny as nanotechnology.

Powder, not gas: A safer, more effective way to create a star on Earth

A major issue with operating ring-shaped fusion facilities known as tokamaks is keeping the plasma that fuels fusion reactions free of impurities that could reduce the efficiency of the reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that sprinkling a type of powder into the plasma could aid in harnessing the ultra-hot gas within a tokamak facility to produce heat to create electricity without producing greenhouse gases or long-term radioactive waste.

Powder, not gas: A safer, more effective way to create a star on Earth

A major issue with operating ring-shaped fusion facilities known as tokamaks is keeping the plasma that fuels fusion reactions free of impurities that could reduce the efficiency of the reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that sprinkling a type of powder into the plasma could aid in harnessing the ultra-hot gas within a tokamak facility to produce heat to create electricity without producing greenhouse gases or long-term radioactive waste.

Batten down the hatches: Preventing heat leaks to help create a star on Earth

Creating a star on Earth requires a delicate balance between pumping enormous amounts of energy into plasma to make it hot enough for fusion to occur and preventing that heat from escaping. Now, physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have identified a method by which instabilities can be tamed and heat can be prevented from leaking from the plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2020 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000