A Collaborative National Center for Fusion & Plasma Research

Fusion energy

Subscribe to RSS - Fusion energy

The energy released when two atomic nuclei fuse together. This process powers the sun and stars.  Read more

Alex Nagy, a “creative and energetic” engineer, is named a Distinguished Engineering Fellow

Alex Nagy, an engineer who for four decades has been working on ways to heat and fuel plasmas in experiments aimed at harnessing the process that powers the sun and stars, was named a Distinguished Engineering Fellow by the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) at the State of the Lab address on Dec. 20. 

Nagy was honored for “creative designs of plasma heating and fueling systems employed in fusion devices worldwide.” The fellowship is part of PPPL’s Distinguished Research and Engineering Fellow Program and comes with a cash award.

Preventing damaging heat bursts at the edge of fusion plasmas

In a fusion energy device that creates a “star in a jar,” bursts of intense heat can damage the walls of the jar that holds the superhot plasma fueling fusion reactions. Fusion scientists now have shown that an innovative new model can serve as the basis for predicting the suppression of such outbursts in the DIII-D National Fusion Facility that General Atomics operates in San Diego.

Batten down the hatches: Preventing heat leaks to help create a star on Earth

Creating a star on Earth requires a delicate balance between pumping enormous amounts of energy into plasma to make it hot enough for fusion to occur and preventing that heat from escaping. Now, physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have identified a method by which instabilities can be tamed and heat can be prevented from leaking from the plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Bank on it: Gains in one type of force produced by fusion disruptions are offset by losses in another

Doughnut-shaped tokamaks — facilities designed to reproduce the fusion energy that powers the sun and stars on Earth — must withstand forces that can be stronger than hurricanes created by disruptions in the plasma that fuels fusion reactions. Recent findings by physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) show that certain forces released by disruptions act in a surprising manner.

Blowing bubbles: PPPL scientist confirms novel way to launch and drive current in fusion plasmas

An obstacle to generating fusion reactions inside facilities called tokamaks is that producing the current in plasma that helps create confining magnetic fields happens in pulses. Such pulses, generated by an electromagnet that runs down the center of the tokamak, would make the steady-state creation of fusion energy difficult to achieve. To address the problem, physicists have developed a technique known as transient coaxial helicity injection (CHI) to create a current that is not pulsed.

PPPL findings: From new fusion developments to surprises in astrophysics at global plasma physics gathering

More than 155 researchers and students — the largest delegation from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in recent years — attended the 61st annual meeting of the American Physical Society Division of Plasma Physics (APS-DPP) in Fort Lauderdale, Florida.

International honors for post-doctoral fellows helping to bring a star to earth

Discoveries about the behavior of plasma that fuels fusion reactions and composes the sun and stars have won prestigious awards for two post-doctoral fellows at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The honors, the 2019 Christiaan Huygens Science Award for physicist Chris Smiet and the 2019 Under 30 Scientist and Student Award for physicist Rupak Mukherjee, recognize exceptional contributions by the two scientists at the start of their careers.

Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

The swirls created by milk poured into coffee or the shudders that can jolt airplanes in flight are examples of turbulence, the chaotic movement of matter found throughout nature. Turbulence also occurs within tokamaks, doughnut-shaped facilities that house the plasma that fuels fusion reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000