A Collaborative National Center for Fusion & Plasma Research

Fusion energy

Subscribe to RSS - Fusion energy

The energy released when two atomic nuclei fuse together. This process powers the sun and stars.  Read more

Stewart Prager

Stewart Prager was the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

Energy Secretary Rick Perry cheers on fusion energy, science education at PPPL

The Princeton Plasma Physics Laboratory’s (PPPL) mission of doing research to develop fusion as a viable source of energy is vital to the future of the planet, U.S. Energy Secretary Rick Perry said during an Aug. 9 visit. 

“It’s important not just to PPPL, not just to the DOE (Department of Energy) but to the world,” Perry told staff members during an all-hands meeting. “If we’re able to deliver fusion energy to the world, we’re able to change the world forever.” 

Workshop advances plans for coping with disruptions on international ITER facility

The sixth Annual Theory and Simulation of Disruptions Workshop at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) made substantial progress toward planning a system for mitigating disruptions on ITER, the international experiment under construction in France to demonstrate the feasibility of fusion power. Disruptions, the sudden loss of heat in plasma that halts fusion reactions, can seriously damage ITER and other doughnut-shaped fusion facilities called tokamaks, and are among the major challenges facing the international experiment. 

Workshop advances plans for coping with disruptions on international ITER facility

The sixth Annual Theory and Simulation of Disruptions Workshop at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) made substantial progress toward planning a system for mitigating disruptions on ITER, the international experiment under construction in France to demonstrate the feasibility of fusion power. Disruptions, the sudden loss of heat in plasma that halts fusion reactions, can seriously damage ITER and other doughnut-shaped fusion facilities called tokamaks, and are among the major challenges facing the international experiment. 

Newest supercomputer to help develop fusion energy in international device

Scientists led by Stephen Jardin, principal research physicist and head of the Computational Plasma Physics Group at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), have won 40 million core hours of supercomputer time to simulate plasma disruptions that can halt fusion reactions and damage fusion facilities, so that scientists can learn how to stop them. The PPPL team will apply its findings to ITER, the international tokamak under construction in France to demonstrate the practicality of fusion energy.

Newest supercomputer to help develop fusion energy in international device

Scientists led by Stephen Jardin, principal research physicist and head of the Computational Plasma Physics Group at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), have won 40 million core hours of supercomputer time to simulate plasma disruptions that can halt fusion reactions and damage fusion facilities, so that scientists can learn how to stop them. The PPPL team will apply its findings to ITER, the international tokamak under construction in France to demonstrate the practicality of fusion energy.

No more zigzags: Scientists uncover mechanism that stabilizes fusion plasmas

Sawtooth swings — up-and-down ripples found in everything from stock prices on Wall Street to ocean waves — occur periodically in the temperature and density of the plasma that fuels fusion reactions in doughnut-shaped facilities called tokamaks. These swings can sometimes combine with other instabilities in the plasma to produce a perfect storm that halts the reactions. However, some plasmas are free of sawtooth gyrations thanks to a mechanism that has long puzzled physicists.

No more zigzags: Scientists uncover mechanism that stabilizes fusion plasmas

Sawtooth swings — up-and-down ripples found in everything from stock prices on Wall Street to ocean waves — occur periodically in the temperature and density of the plasma that fuels fusion reactions in doughnut-shaped facilities called tokamaks. These swings can sometimes combine with other instabilities in the plasma to produce a perfect storm that halts the reactions. However, some plasmas are free of sawtooth gyrations thanks to a mechanism that has long puzzled physicists.

Seth Davidovits wins 2018 Marshall N. Rosenbluth dissertation award

Seth Davidovits, a 2017 graduate of the Program in Plasma Physics in the Princeton University Department of Astrophysical Sciences, has won the 2018 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award presented by the American Physical Society (APS). The award, named for distinguished plasma physicist Marshall Rosenbluth, whose career included 13 years at the U.S.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000