A Collaborative National Center for Fusion & Plasma Research

Fusion energy

Subscribe to RSS - Fusion energy

The energy released when two atomic nuclei fuse together. This process powers the sun and stars.  Read more

Stewart Prager

Stewart Prager was the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

PPPL physicist Stoltzfus-Dueck will explore the performance of fusion plasma with an Early Career Research Award

Timothy Stoltzfus-Dueck, a theoretical physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has won a DOE Early Career Research Award for exceptional scientists in the early stages of their careers. Stoltzfus-Dueck will use the five-year, approximately $500,000 per year award to develop and test models essential to the confinement of plasma, the hot, charged gas that must be tightly confined in doughnut-shaped devices to produce fusion reactions.

PPPL physicist Stoltzfus-Dueck will explore the performance of fusion plasma with an Early Career Research Award

Timothy Stoltzfus-Dueck, a theoretical physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has won a DOE Early Career Research Award for exceptional scientists in the early stages of their careers. Stoltzfus-Dueck will use the five-year, approximately $500,000 per year award to develop and test models essential to the confinement of plasma, the hot, charged gas that must be tightly confined in doughnut-shaped devices to produce fusion reactions.

Improving the magnetic bottle that controls fusion power on Earth

Scientists who use magnetic fields to bottle up and control on Earth the fusion reactions that power the sun and stars must correct any errors in the shape of the fields that contain the reactions. Such errors produce deviations from the symmetrical form of the fields in doughnut-like tokamak fusion facilities that can have a damaging impact on the stability and confinement of the hot, charged plasma gas that fuels the reactions.

Seeing more clearly: Revised computer code accurately models an instability in fusion plasmas

Subatomic particles zip around ring-shaped fusion machines known as tokamaks and sometimes merge, releasing large amounts of energy. But these particles — a soup of charged electrons and atomic nuclei, or ions, collectively known as plasma — can sometimes leak out of the magnetic fields that confine them inside tokamaks. The leakage cools the plasma, reducing the efficiency of the fusion reactions and damaging the machine. Now, physicists have confirmed that an updated computer code could help to predict and ultimately prevent such leaks from happening.

Seeing more clearly: Revised computer code accurately models an instability in fusion plasmas

Subatomic particles zip around ring-shaped fusion machines known as tokamaks and sometimes merge, releasing large amounts of energy. But these particles — a soup of charged electrons and atomic nuclei, or ions, collectively known as plasma — can sometimes leak out of the magnetic fields that confine them inside tokamaks. The leakage cools the plasma, reducing the efficiency of the fusion reactions and damaging the machine. Now, physicists have confirmed that an updated computer code could help to predict and ultimately prevent such leaks from happening.

Physicist Rajesh Maingi heads nationwide liquid metal strategy program for fusion devices

Rajesh Maingi, a world-renowned expert on the physics of plasma, has been named to co-lead a national program to unify research on liquid metal components for future tokamaks, doughnut-shaped fusion facilities. Maingi, who heads research on boundary physics and plasma-facing components at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), will coordinate the three-year project in conjunction with Oak Ridge National Laboratory and the University of Illinois at Urbana-Champaign.

Physicist Rajesh Maingi heads nationwide liquid metal strategy program for fusion devices

Rajesh Maingi, a world-renowned expert on the physics of plasma, has been named to co-lead a national program to unify research on liquid metal components for future tokamaks, doughnut-shaped fusion facilities. Maingi, who heads research on boundary physics and plasma-facing components at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), will coordinate the three-year project in conjunction with Oak Ridge National Laboratory and the University of Illinois at Urbana-Champaign.

Graduate student plasma physicist Alexander Glasser wins Princeton University Fellowship

Graduate student Alexander Glasser, who arrived at the Program in Plasma Physics at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) after nearly a decade working on Wall Street, has won a highly competitive Charlotte Elizabeth Procter Honorific Fellowship from Princeton University. The fellowship provides full tuition and a stipend for the 2019-2020 academic year for students “displaying the highest scholarly excellence in graduate work.”

Graduate student plasma physicist Alexander Glasser wins Princeton University Fellowship

Graduate student Alexander Glasser, who arrived at the Program in Plasma Physics at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) after nearly a decade working on Wall Street, has won a highly competitive Charlotte Elizabeth Procter Honorific Fellowship from Princeton University. The fellowship provides full tuition and a stipend for the 2019-2020 academic year for students “displaying the highest scholarly excellence in graduate work.”

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000