A Collaborative National Center for Fusion & Plasma Research

Exascale Computing

Subscribe to RSS - Exascale Computing

Exascale Computing

New Princeton supercomputer advances fusion research at PPPL

The new Princeton University supercomputer, Traverse, enhances research at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics (PPPL) to develop the science to bring the fusion that powers the sun and stars to Earth. Princeton officially launched the supercomputer Sept. 30 in a ribbon-cutting ceremony in the High-Performance Computing Research Center on the Forrestal campus.

New Princeton supercomputer advances fusion research at PPPL

The new Princeton University supercomputer, Traverse, enhances research at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics (PPPL) to develop the science to bring the fusion that powers the sun and stars to Earth. Princeton officially launched the supercomputer Sept. 30 in a ribbon-cutting ceremony in the High-Performance Computing Research Center on the Forrestal campus.

Artificial intelligence project to help bring the power of the sun to Earth is picked for first U.S. exascale system

To capture and control the process of fusion that powers the sun and stars in facilities on Earth called tokamaks, scientists must confront disruptions that can halt the reactions and damage the doughnut-shaped devices.  Now an artificial intelligence system under development at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University to predict and tame such disruptions has been selected as an Aurora Early Science project by the Argonne Leadership Computing Facility, a DOE Office of Science User Facility.

Artificial intelligence project to help bring the power of the sun to Earth is picked for first U.S. exascale system

To capture and control the process of fusion that powers the sun and stars in facilities on Earth called tokamaks, scientists must confront disruptions that can halt the reactions and damage the doughnut-shaped devices.  Now an artificial intelligence system under development at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University to predict and tame such disruptions has been selected as an Aurora Early Science project by the Argonne Leadership Computing Facility, a DOE Office of Science User Facility.

Energy Secretary Rick Perry cheers on fusion energy, science education at PPPL

The Princeton Plasma Physics Laboratory’s (PPPL) mission of doing research to develop fusion as a viable source of energy is vital to the future of the planet, U.S. Energy Secretary Rick Perry said during an Aug. 9 visit. 

“It’s important not just to PPPL, not just to the DOE (Department of Energy) but to the world,” Perry told staff members during an all-hands meeting. “If we’re able to deliver fusion energy to the world, we’re able to change the world forever.” 

COLLOQUIUM: The U.S. D.O.E. Exascale Computing Project – Goals and Challenges

The U.S. Department of Energy established in 2016 the Exascale Computing Project (ECP) -- a joint project of the DOE Office of Science (DOE-SC) and the DOE National Nuclear Security Administration (NNSA) -- that will result in a capable exascale ecosystem and prepare mission critical scientific and engineering applications to take advantage of that ecosystem. 

Advanced fusion code led by PPPL selected to participate in Early Science Programs on three new DOE Office of Science pre-exascale supercomputers

U.S. Department of Energy (DOE) high-performance computer sites have selected a dynamic fusion code, led by physicist C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL), for optimization on three powerful new supercomputers. The PPPL-led code was one of only three codes out of more than 30 science and engineering programs selected to participate in Early Science programs  on all three new supercomputers, which will serve as forerunners for even more powerful exascale machines that are to begin operating in the United States in the early 2020s.

Advanced fusion code led by PPPL selected to participate in Early Science Programs on three new DOE Office of Science pre-exascale supercomputers

U.S. Department of Energy (DOE) high-performance computer sites have selected a dynamic fusion code, led by physicist C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL), for optimization on three powerful new supercomputers. The PPPL-led code was one of only three codes out of more than 30 science and engineering programs selected to participate in Early Science programs  on all three new supercomputers, which will serve as forerunners for even more powerful exascale machines that are to begin operating in the United States in the early 2020s.

Structure-preserving Geometric Algorithms & Exascale Computing

It is difficult for the standard numerical algorithms currently adopted by the plasma physics community to meet the long-term accuracy and fidelity requirement in large-scale numerical studies of multi-scale, complex dynamics of plasmas in space and laboratory. To overcome this difficulty, researchers have been actively developing a new generation of numerical algorithms that preserve the geometric structures, such as the symplectic structure, of theoretical models in plasma physics.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2019 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000