A Collaborative National Center for Fusion & Plasma Research

Engineering

Subscribe to RSS - Engineering

This function manages the design, fabrication and operation of PPPL experimental devices, and oversees the Laboratory’s facilities and its electrical and infrastructure systems.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Smooth sailing: PPPL develops an integrated approach to understand how to better control instabilities in an international fusion device

A key goal for ITER, the international fusion device under construction in France, will be to produce 10 times more power than goes into it to heat the hot, charged plasma that sustains fusion reactions. Among the steps needed to reach that goal will be controlling instabilities called “neoclassical tearing modes” that can cause magnetic islands to grow in the plasma and shut down those reactions.

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas, scientists find

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found. 

Lithium — it’s not just for batteries: The powdered metal can reduce instabilities in fusion plasmas

You may be most familiar with the element lithium as an integral component of your smart phone’s battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found.

PPPL scientists deliver new high-resolution diagnostic to national laser facility

Scientists from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have built and delivered a high-resolution X-ray spectrometer for the largest and most powerful laser facility in the world. The diagnostic, installed on the National Ignition Facility (NIF) at the DOE’s Lawrence Livermore National Laboratory, will analyze and record data from high-energy density experiments created by firing NIF’s 192 lasers at tiny pellets of fuel. Such experiments are relevant to projects that include the U.S. Stockpile Stewardship Program, which maintains the U.S.

PPPL honors Grierson and Greenough for distinguished research and engineering achievements

A breakthrough in the development of fusion diagnostics and the creative use of radio frequency waves to heat the plasma that fuels fusion reactions earned the 2017 outstanding research and engineering awards from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Physicist Brian Grierson and engineer Nevell Greenough received the honors from PPPL Interim Director Richard Hawryluk at a ceremony November 7 for their exceptional achievements.

PPPL honors Grierson and Greenough for distinguished research and engineering achievements

A breakthrough in the development of fusion diagnostics and the creative use of radio frequency waves to heat the plasma that fuels fusion reactions earned the 2017 outstanding research and engineering awards from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Physicist Brian Grierson and engineer Nevell Greenough received the honors from PPPL Interim Director Richard Hawryluk at a ceremony November 7 for their exceptional achievements.

Physicists propose new way to stabilize next-generation fusion plasmas

A key issue for next-generation fusion reactors is the possible impact of many unstable Alfvén eigenmodes, wave-like disturbances produced by the fusion reactions that ripple through the plasma in doughnut-shaped fusion facilities called “tokamaks.” Deuterium and tritium fuel react when heated to temperatures near 100 million degrees Celsius, producing high-energy helium ions called alpha particles that heat the plasma and sustain the fusion reactions.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2018 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000