A Collaborative National Center for Fusion & Plasma Research

Diagnostic equipment

Subscribe to RSS - Diagnostic equipment

PPPL ramps up activities for diagnostics for ITER fusion experiment

The U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has launched engineering design activity on several plasma diagnostic systems for ITER, the international fusion experiment now under construction in France. When installed on the ITER tokamak, these diagnostics will allow scientists to make measurements needed to understand the behavior of the hot super-charged gas called plasma under fusion conditions in which ITER will produce for the first time a self-sustaining or burning plasma.  

New national facility will explore low-temperature plasma, a dynamic source of innovation for modern technologies

Low-temperature plasma, a rapidly expanding source of innovation in fields ranging from electronics to health care to space exploration, is a highly complex state of matter.  So complex that the Princeton Plasma Physics Laboratory (PPPL) has teamed with Princeton University to become home to a collaborative facility open to researchers from across the country to advance the understanding and control of this dynamic physical state.

Extensive resources

New technique merging sound and math could help prevent plasma disruptions in fusion facilities

Scientists have created a novel method for measuring the stability of a soup of ultra-hot and electrically charged atomic particles, or plasma, in fusion facilities called “tokamaks.” Involving an innovative use of a mathematical tool, the method might lead to a technique for stabilizing plasma and making fusion reactions more efficient.

Undergraduate students extoll benefits of national laboratory research internships in fusion and plasma science

They gathered in the lobby of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in dresses and suits, standing in front of posters showing computer-aided-design (CAD) drawings, mathematical equations, and line graphs, preparing to explain a summer of plasma physics research.

Scientists improve ability to measure electrical properties of plasma

Any solid surface immersed within a plasma, including those in satellite engines and fusion reactors, is surrounded by a layer of electrical charge that determines the interaction between the surface and the plasma. Understanding the nature of this contact, which can affect the performance of the devices, often hinges on understanding how electrical charge is distributed around the surface. Now, recent research by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) indicates a way to more accurately measure these electrical properties.

PPPL physicists to create new X-ray diagnostics for the WEST fusion device in France

A team of scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a DOE Office of Science award to develop new X-ray diagnostics for WEST — the Tungsten (W) Environment in Steady-state Tokamak — in Cadarache, France. The three-year, $1-million award will support construction of two new devices at PPPL, plus collaboration with French scientists and deployment of a post-doctoral researcher to test the installed devices at CAE Laboratories, the home of the WEST facility. 


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Pinterest · Instagram · LinkedIn · Tumblr.

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy · Sign In (for staff)

© 2021 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000