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Problem 1: Envelope equations for periodically-focused beam at low intensity 

(Davidson & Qin, Problem 5.8)   

 

Consider the low intensity kinetic beam equilibria in a periodic quadrupole 

focusing field described by the Vlasov equation  
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(a) By taking the moment of the Vlasov equation, derive the following dynamical 

equations for the evolution of ,  and   2〈 〉x ′〈xx 〉 2′〈 〉x
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(b) Make use of the results in (a) and the definition of emittance 

and the definition of the RMS beam radius 

to show that  
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(c) Derive the following dynamic equation for emittance, 
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Problem 2: Global force balance for a thermal equilibrium beam in a smooth focusing 

field (Davidson & Qin, Problem 5.5) 

 
For a thermal equilibrium beam in a smooth focusing field, consider the radial force 
balance equation 
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where the radial self-electric field is given in terms of the density profile  by  ( )bn r
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Show that the radial force balance equation gives the following global force balance:  
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