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Beam physics application ---
 

high energy density physics

Photoionized
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Neutralized drift compression 
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Gamma ray bursters

 

experiment 



The Heavy Ion Fusion Science Virtual National Laboratory

Beam physics application ---
 

heavy ion fusion

Beams strike “hohlraum,”

 

producing 
x-ray bath for fusion capsules.

 

Beams strike “hohlraum,”

 

producing 
x-ray bath for fusion capsules.



Beam physics application ---
 

modern high intensity accelerators

Spallation

 
Neutron Source

Linear Coherent Light Source
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Nonlinear Vlasov-Maxwell equations for high intensity beams

Collective dynamics described by the Vlasov

 
equation
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Self-electric and self-magnetic fields self-consistently

 
determined 

from Maxwell’s equations. 
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 δf particle simulation method reduces noise
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Beam Equilibrium Stability and Transport (BEST) Code 

Perturbative particle simulation method to reduce noise. 

Linear eigenmodes and nonlinear evolution. 

2D and 3D equilibrium structure.

Multi-species; electrons and ions; accommodate very large mass ratio.

Multi-time-scales, frequency span a factor of 105. 

3D nonlinear perturbation.

Message Passing Interface

Multiple-1D domain decompositon (OpenMP by users). 

Large-scale computing: particle x time-steps ~ 0.5 x 1012.

Scales linearly to 512 processors on IBM-SP3 at NERSC.

NetCDF, HDF5 parallel I/O diagnostics. 

Physics

Computation



Nonlinear Equilibrium  ( )βφ ω ω= + + + ,
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2D coasting beams 3D bunched beams

Chaotic orbits. 
Linear Stability 
theory not possible.
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Long-time nonlinear perturbations

0

Theorem [Davidson, 1998]:
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Collective interior mode excitation

Mode structure confined 
inside the beam

Collective dynamics 
manifest by eigenmodes
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Collective surface mode excitation 

Dispersion relation:

Dipole mode structure
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Electron-ion two-stream instability

0t =

200/ bt βω=

Surface mode destabilized by background electrons.

Observed in high intensity proton beams.

Could be a show stopper for high intensity 
accelerators, e.g. SNS.

Transverse geometry and dynamics are important.

Important damping mechanisms (Landau damping) 
included. 
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Instability threshold observed. 

Agrees well with experiment 
observations (Proton Storage Ring) 

Mode structure

Growth rate

Real oscillation frequency

Instability properties predicted by BEST simulations

Late time nonlinear growth observed. 

There are two-phases to the instability.
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Strong Harris instability for beams with large temperature anisotropy

Moderate intensity largest threshold temperature anisotropy.
Nonlinear saturation by particle trapping tail formation.
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Nonlinear space-charge 
effects reduce integrability

 of orbits in 3D
Chaotic particle dynamics

3D anisotropic 
quasi-equilibrium
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Collective excitation in 3D bunched beams
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Vlasov-Maxwell equations for high intensity beam physics.

Nonlinear δf particle simulation method significantly reduces noise.

Major progress in simulation studies using BEST code.
–

 
Electron-cloud-induced two-stream instability.

–
 

Temperature anisotropy instability.

Exciting future task areas include:
–

 
Collective excitations and instabilities in bunched beams.

–
 

Beam-beam and beam-plasma collective interactions.

Impossible without NERSC. Thank you.

Conclusions
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