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Beam physics at Princeton Plasma Physics Lab, Princeton University

Develop advanced analytical and numerical models describing the 
nonlinear dynamics and collective processes in intense charged particle 
beams and beam-plasma interactions. (OHEP, OFES).

Carry out  experimental studies of intense charged particle beam and 
beam-plasma interactions in  high-leverage areas of heavy ion fusion 
science that make effective use of Princeton’s established experimental 
capabilities (OFES).

Nonneutral
 

plasmas High intensity beams (Davidson 1980s)

Vlasov-Maxwell theory for high intensity beams.

Perturbative (delta-f) particle simulation method for collective effects.

Paul trap simulator experiment.

Methods and techniques of plasma physics beam physics.



Presentation outline

Vlasov-Maxwell kinetic system – self-consistently description of 
collective effects of high intensity beams.

Perturbative (δf) particle simulation method greatly reduces 
simulation noise.

Stable eigenmode excitations

Instabilities

Two-stream interactions and instabilities
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Nonlinear Vlasov-Maxwell equations for high intensity beams

Collective dynamics described by the Vlasov

 
equation 

2 3

2 3

4 ( )

4 ( )

b

z b z

e d pf t

A ce d pv f t

φ π

π

∇ = − , , ,

∇ = − , , .

∫

∫

x p

x p

Self-electric and self-magnetic fields self-consistently

 
determined 

from Maxwell’s equations. 
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 δf particle simulation method reduces noise
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Beam Equilibrium Stability and Transport (BEST) code 

Perturbative particle simulation method to reduce noise. 

Linear eigenmodes and nonlinear evolution. 

2D and 3D equilibrium structure.

Multi-species; electrons and ions; accommodate very large mass ratio.

Multi-time-scales, frequency span a factor of 105. 

3D nonlinear perturbation.

Message Passing Interface

Particle-domain-decomposition. 

Large-scale computing: particle x time-steps ~ 0.5 x 1012.

Scales linearly to 512 processors on IBM-SP3 at NERSC.

NetCDF, HDF5 parallel I/O diagnostics. 

Physics

Computation



Nonlinear equilibrium  ( )βφ ω ω= + + + ,
2

2 2 2 21
2 2b b b z

b

p
H e m r z

m

( ) ( )π /
−

= = ,0 0 3 2
ˆ( ) exp

2
b

b

Hnf f H
Tm T

( )βω ω φ
φ π

⎡ ⎤+
⎢ ⎥∇ = − − − ,
⎢ ⎥⎣ ⎦

2 2 2 2
02

0 ˆ4 exp
2

b b z b
b

m r z e
e n

T T

2D coasting beams 3D bunched beams

Chaotic orbits. 
Linear stability 
theory not possible.
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Global conservation constrains for the nonlinear Vlasov-Maxwell equations.
Determine Class of beam distributions that are stable at high intensity.  

R. C. Davidson, Physical Review Letters 81, 991 (1998). 

Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, 2001), R. 
C. Davidson and H. Qin, Chapter 4; 

Nonlinear stability theorem

Self-field

Focusing field
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A sufficient condition for linear and nonlinear stability is:

where



Long-time nonlinear perturbations

contain 
perturbation 
spectrum
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Collective interior mode excitation

Mode structure confined 
inside the beam

Collective dynamics 
manifest by eigenmodes
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Collective surface mode excitation 

Dispersion relation:

Dipole mode structure
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One-Component Beams

Harris and Weibel instability driven by temperature anisotropy

Resistive wall instability

Propagation Through Background speices

Two-stream instability
Ion-electron (Electron cloud) instability

Propagation Through Background Plasma

Resistive hose instability
Multispecies Weibel instability 
Multispecies two-stream instability

Collective instabilities in intense charged particle beams 
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Harris instability by large temperature anisotropy

01.0/|| =⊥bb TT

E. A. Startsev, et al., Physical Review Special Topics Accel. & Beams 8, 124201(2005).

Nonlinear saturation by particle trapping



Electron-ion two-stream instability

0t =

200/ bt βω=

Surface mode destabilized by background species.

Observed in high intensity proton beams (PRS).

Could be a show stopper for high intensity 
accelerators, e.g. SNS.

Transverse geometry and dynamics are important.

Damping mechanisms (Landau damping) are 
important. 
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Agrees well with experiment observations (Proton Storage Ring) 

Mode structure

Growth rate

Real oscillation frequency

Instability properties predicted by BEST simulations

Late time nonlinear growth observed. 

There are two-phases to the instability.
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R. C. Davidson, et al, PRST-AB 2, 054401(1999).

Possible two-stream instabilities for Cornell ERL

No self-space-charge effect for beam.

Possible two-stream interactions:

Small mass ratio is a disadvantage.

Fast electron- slow electron in ERL

Electron-ion (background)
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Damping mechanisms for two-stream instabilities 

Landau damping by momentum spread.

Landau damping induced by transverse turn spread.

Nonlinear space charge field.

Chromaticity induced.

Theoretical growth rate is greatly reduced.

Instability threshold observed both numerically and experimentally. 
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Vlasov-Maxwell equations provide a very effective tool to understand 
collective processes in intense charged particle beams.

Nonlinear δf particle simulation method significantly reduces noise.

Major progress has been made in simulation studies of collective effects.
–

 
Electron-cloud-induced two-stream instability.

–

 
Temperature anisotropy instability.

Conclusions
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