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A nonlinear 6f particle simulation method based on the Vlasov—Maxwell equations has been
recently developed to study collective processes in high-intensity beams, where space-charge and
magnetic self-field effects play a critical role in determining the nonlinear beam dynamics.
Implemented in the Beam Equilibrium, Stability and TranspeesT code[H. Qin, R. C. Davidson,

and W. W. Lee, Phys. Rev. ST Accel. BeaB)9084401(2000; 3, 109901(2000], the nonlineawsf

method provides a low-noise and self-consistent tool for simulating collective interactions and
nonlinear dynamics of high-intensity beams in modern and next generation accelerators and storage
rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear
eigenmodes of high intensity charged particle beams can be systematically studied ugiegrthe
code. Simulation results for the electron—proton two-stream instability in the Proton Storage Ring
experimenfR. Maceket al,, in Proceedings of the Particle Accelerator Confergn€hicago, 2001

(IEEE, Piscataway, NJ, 200Mol. 1, p. 689 at the Los Alamos National Laboratory agree well with
experimental observations. Large-scale parallel simulations have also been carried out for the
ion—electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy
ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream
instability has a dipole-modéhose-like structure and can be stabilized by a modest axial
momentum spread of the beam particles. 2603 American Institute of Physics.

[DOI: 10.1063/1.1559008

I. INTRODUCTION (BEST) code at the Princeton Plasma Physics Laboratory. In
daddition, theBEST code is fully three-dimensional and has

In contemporary pen_odl(_: focusing accelerz_ators an multi-species capability. It has been used to investigate the
transport systems for applications such as spallation nemroé]ectron-ion two-stream instabilify’ temperature anisotropy
sources, heavy ion fusion, and nuclear waste transmutatiopnstabi”tyg periodically-focusing ’beam propagatf’orand
the beam intensity has increased to regimes where CO"eCt'.Vgther collective processes. Especially, simulations carried out

processes and self-field effects play a significant role. It 'Soy the BEST code for the electron—protof@—p two-stream

therefore increasingly important to improve our theoret'calinstability in the Proton Storage Rirf@SR at the Los Ala-

gnde;stgnciwg gf tk;ﬁ mfluencehm; the ||:1;ens$rs$f-flﬁltijs fri?%}os National Laboratory has produced results in good agree-
uced by the beam space charge and current on detalledy ;i experimental observations.

o e s e wnsags, I 1S paber, e wil present  comprehensive descrp

has been develobed to stud self—cons;stentl the gollectiv ion of the simulation capabilities of theesT code and its
ped y sell-cons 8 gpplications to beam physics problems involving strong

processes and self-field effects in high intensity charged par-

. ENP . . - space charge and high current. The paper is organized as
ticle beams:* With the help of various analytical techniques, follows. The theoretical model angf formalism are outlined

the kinetic approach hgs been succ_essful_ly applied to Widﬁ Sec. Il. Following a short description of the numerically
range of beam physics problem involving strong space-

charge and hiah current. Eor example. a nonlinear kineti solved equilibrium in Sec. lll, we present in Sec. IV simula-
9 9 ’ p'e, Sion results for two classes of collective modes, i.e., the body

St.ab'“ty _theorem has been p_roved _for_charged particle be‘?‘mr%ode and the surface mode. In Sec. V, the electron—ion two-
with arbitrary space-charge intensity in the smooth focusin

apDroximatio-2 However. manv important questions are%tream instability is studied in detail for a typical proton
bp . . y Imp q beam in the PSR experiment at moderate beam intensity, and
still unaccessible by analytical methods.

. . . for a cesium beam with very high beam intensity for heav
Recently, thesf formalism, a low-noise, nonlinear per- y hig Y y

. . . . . ion fusion drivers. We summarize the conclusions and dis-
turbative particle simulation technique, has been developeé)

. . . uss future work in Sec. VI.
to solve the nonlinear Vlasov—Maxwell equations for intense
beam applications=® The &f formalism has been imple- 1. THEORETICAL MODEL AND THE &f FORMALISM
mented in the Beam Equilibrium, Stability and TransportFOR HIGH-INTENSITY CHARGED PARTICLE

BEAMS
apaper KI1 4, Bull. Am. Phys. Sod7, 181 (2002. _ Th_e theoretical quel employt_ed here to study the r_ligh
nvited speaker. intensity charged particle beams is based on the nonlinear
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Vlasov—Maxwell equations? We consider a thin, continu- menta. The equations of motion for the particles, obtained
ous, high-intensity charged particle beajs(©) propagating from the characteristics of the nonlinear Vlasov equatibn

in the z-direction. Possible background electron and ion com-are given by

ponents {=e,i) are allowed in the system. A background
population of electrons, for example, can result by secondary dx, ji

— -1
emission when energetic ions or electrons strike the chamber ~ dt (vimy) Py
wall, or through the ionization of background neutral gas by
the beam particles. Each charge component is described by a %_ o 3. -1, o
distribution functionf;(x,p,t)*? in the phase spacexp). dt Vi = BiCtyy "My (Pgyi— yimiBic), ®
The charge componentsj=b,e,i) propagate in the
z-direction with characteristic axial momentumm;g;c, dp;i P Uzji
where V;=gjc is the average directed axial velocity; Tt iMepXi €| Ve VA, .

— _ p2—1/2 ; nicti . . . . . . . .
=(1—pj) " is the relativistic mass factog; andm; are o0 the subscriptji” labels theith simulation particle of

the charge and rest mass, respectively, gthaspecies par- the jth species. Furthermore, the dynamical equationsvfpr
ticle, andc is the speed of lighin vacua While the nonlinear is5'7l‘9 P ' ' y q e

of formalism outlined here is readily adapted to the case of

a periodic applied focusing field” for the present purposes dw;; 1 ofjp [dpj

we make use of amooth-focusingnodel in which the ap- at _(1_Wii)f__0 a_p' (W)

plied focusing force is described }Ocz—yjmjwf;jxi, ! (4
wherex, =x&+Ye, is the transverse displacement of a par- dp;; Ui

ticle from the beam axis, and ;=const is the effective dr E_ei(V‘%_?VL Az,

applied betatron frequency for transverse oscillations. Fur- .
thermore, in a frame of reference moving with axial velocity Where 6¢=¢— ¢, and 6A,=A,—Ay. Here, the equilib-
Bjc, the motion of ajth species particle is assumed to be UM solutions (o, Ay, fjo) solve the steady-statei/dt
nonrelativistic. The space-charge intensity is allowed to be=0) Vlasov—Maxwell equationgl) and(2). A wide variety
arbitrarily large, subject only to transverse confinement ofof @xisymmetric equilibrium solutions tolEqsl) and (2)
each charge component. In a two-species system consistifjVé been investigated in the I|teratl].1?e1.- The perturbed
of beam ions and stationary background electrons, for exg istribution 6f; is o?tamed through the weighted Klimontov-
ample, the beam ions are confined by the applied focusin{§" representatiof,

force, while the background electrons are confined in the N. Nsi

transverse plane by the space-charge potegt{alt) pro- 5fj=N—’_ 2 W;i 8(X—X;;) 8(P—pji ), (5)
duced by the excess ion charge. In the electrostatic and mag- sji=1

netostatic approximations, we represent the self-electric anwhereNj is the total number of actugth species particles,
self-magnetic fields asE°=-V¢(x,t) and B°=V  andNy;is the total number ofimulationparticles for thejth

X A,(x,t)e,. The nonlinear Vlasov—Maxwell equations can species. Maxwell’s equations are also expressed in terms of

be approximated by the perturbed fields and perturbed density according to
47
Jd Jd v 254 2 — ;
2 z Veép=—4 eon,, VO6A,=—— Sz,
(E‘FV&— ’me](x)ﬁJXL‘i‘eJ V¢_?VLAZ):| ¢ 772 || z c 2 JZ]
(6)
Jd
~%]f1(x,p,t)=0, (1)  where
N, &
and M= > WiS(x—x;),
sji=1
7

V2p=—4m, e | d*pfi(x,p,1), . &N S
j 5sz:W i21 U 2jiWji S(X—Xji).-
sj i=

2
4 Here, S(x—X;;) is a shape function distributing particles on
VA=~ e EJ: elf d*po,fi(x.p.0). the grids in Jconfiguration space.
The nonlinearsf particle simulations are carried out by
In the nonlinearsf formalism®~° we divide the total iteratively advancing the particle motions, including the
distribution function into two parts;; = f;o+ of;, wheref;;  weights they carry, according to Eq8) and(4), and updat-
is a knownequilibrium solution ¢/dt=0) to the nonlinear ing the fields by solving the perturbed Maxwell’s equations
Vlasov—Maxwell equationgl) and (2), and the numerical (6) with appropriate boundary conditions. Even though it is a
simulation is carried out to determine the detailed nonlineaperturbative approach, th& method isfully nonlinearand
evolution of the perturbed distribution functiaff;. This is  simulates completely the original nonlinear Vlasov—Maxwell
accomplished by advancing the weight function defined byequations. Compared with conventional particle-in-gelC)
w;=6f;/f;, together with the particles’ positions and mo- simulations, the noise level iéf simulations is significantly
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reduced. The dominant numerical noise mechanisms in pations in cylindrical geometry. For those fast particle motions
ticle simulations, such as numerical collisions, are statisticalwhich require much larger sampling frequencgtLlthan the
The 6f method reduces the noise level in the simulationsfrequency of the mode being studied, the code uses an adia-
because the statistical noise, which is of or@éN_ *?) for  batic field pusher to advance the particles many time steps
the total distribution function in the conventional particle-in- without solving for the perturbed fields. The upper limit for
cell method, is only associated with the perturbed distribuAt, the time step to advance the particles’ phase space posi-
tion function in thesf method. If the same number of simu- tion, is normally determined by the Courant condition. For
lation particles is used in the two approaches, then the noisthe e—p two-stream instability, the electrons’ transverse mo-
level in the f method is reduced by a factor &f5f relative  tion requires the smallesit, and the mode frequency is
to the conventional PIC method. To achieve the same accuwsomparable to the electron bounce frequency in the trans-
racy for the perturbed fields, the number of simulation parverse direction. We can therefore update the electrons’ phase
ticles used in thesf method is reduced by a factor of space positions more often than the field. On the IBM SP
(f/5%)2. For the e—p two-stream instability in the PSR ex-supercomputer at the National Energy Research Scientific
periment studied in Sec. V, we obtain satisfactory simulatiorComputing Center, th@esT code typically advances 4.2
results with about 10 simulation particles using thef X 10 particles< time-steps when simulating the electron—
method. If the conventional PIC method were used, then foion two-stream instability in high intensity beams.
a nonlinear saturation level of 1%, about*lfimes more
simulation particles would be needed to achieve the same
accuracy. When studying the ion—electron two-stream instag; EQUILIBRIUM
bility in a high intensity heavy ion beam for heavy ion fusion
drivers, it takes a relatively long time to simulate the insta-  For practical accelerator experiments, it is important to
bility due to the large mass ratio between the ions and thebtain the equilibrium 4/Jt=0) distribution functiond, of
electrons [mg/my=1/(1836x133)=4.1x10" 6, for ce- the quiescent beamj£b) and any other possible charged
sium|, and the fact that the growth rate of the instability is particle components intentionally or unintentionally intro-
much smaller than the real frequency of the eigenmode. Thduced into the system. From the equilibrium distribution
low-noise 6f method is even more desirable in such applica-function f;,, the rms radius, transverse emittance and other
tions. important beam parameters can be readily calculated. It is
The 6f method can also be used to study detailed lineamlso necessary to know, analytically or numerically, the equi-
eigenmode and stability properties, provided the factor (llibrium distribution functionf;, in order to carry out the
—wj;) in Eq. (4) is approximated by unity, and the forcing particle simulations for the perturbed distribution function
terms in Eq.(3) are replaced by the unperturbed force. 5f; .
Implementation of the 3D multispecies nonlinetirsimula- Although there are many possible choicesf pf“**!in
tion method described above is embodied in tEesT  the present study we assume that the background equmbrium
cod€~? developed at the Princeton Plasma Physics Laboradistribution (7/9t=0) is the self-consistent bi-Maxwellian
tory. The code advances the particle motions using a leaistribution with temperaturd;, =const in thex—y plane,
frog or Runge—Kutta method, and solves Maxwell's equa-and temperaturé; = const in thezdirection. That is,

®

n, —¥im;Bic)? 212yim;+ yim; w5122+ e po— BiA
fio(r,p)= ! p{_wlexp{_pi Vit ™ yjmwg; i(¢o— BjAz)

(2m;)*2y /2TJLTJl|12 2y;mTy Ti ’

wheren; is the density on axisr(=0) of the jth species. Maxwellian distribution in Eq.(8) has been proven to be
Here, ¢>0 andA,, are equilibrium self-field potentials, deter- linearly and nonlinearly stabfe* for transverse perturbations
mined self-consistently from the nonlinear Maxwell equa-with k,=0. Numerically, Egs.(8) and (9) can be easily

tions, solved. We demonstrate the equilibrium solutions using a set
1 of beam parameters typical for heavy ion fusion drivers. We
19, 9¢0) _ —47> e | d®pfi(r.p), consider a Cs beam with rest mass,=133m,, wheremg
ror.or T . is the proton rest mass, and kinetic energy,€1)m,c

©)] =2.5 GeV. To study the ion-electron two-stream instability,

1d dAxp(r) 4w T . .
IR AL 2 elf d3pv, fio(r,p). an electron poplulation is introduced into the system with
ror ar

V=0 andwg.=0 (corresponding to axially stationary elec-
Unlike the Kapchinskij—Viadimirskij(KV) distributiont? ~ trons. The beam intensity is taken to be near the space-

which is unstable due to the highly inverted distribution in charge-dominated limit, corresponding $g= wpb/zvbwﬁb
phase space, a single-species charged particle beam with b-0.999. The fractional charge neutralizatiés:n /n,J is
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FIG. 1. Plots of the normalized density profiles of the equilibrium beam ions
and background electrons.

=)
I
&
taken to be 10%, whene, andny, are the electron and beam —
ion densities on axisr=0). Plotted in Fig. 1 are the nor- §

6

malized equilibrium density profiles for the cesium ions and
electrons,n?(r)/n;= (1/n;) fd3pfio(r,p.t) (j=b.€), which
are readily obtained once the equilibrium potentialsand —os [ , , , ,
Ao are solved numerically from Eqé&3) and(9). The trans- 0.0 0.2 0.4 0.6 08 1.0
verse temperatures of the electrons and ions in Fig. 1 arc /Ty

chosen to beTy, /'ybme§=1.1X 10°° and Ter /ybmeg FIG. 3. (a) Fast-Fourier-transforn{FFT) spectrum of perturbed density
=2.47x 10 ®, such that the ion and electron density profileSmeasured in the simulation, aria) the corresponding eigenmode structures.
overlap radially. The overlapping of the electron density pro-

file with that of the ions is expected to maximize the two-

stream interaction and therefore the growth rate. In thgy. EIGENMODE ANALYSIS IN HIGH-INTENSITY
space-charge-dominated limgy—1), if there is no electron BEAMS

population, the beam will have a flat-top density profile as
illustrated in Fig. 2. Plotted in Fig. 2 is the beam density

As mentioned in Sec. ll, the5f particle simulation

profile with the same beam intensity paramesgeas the case ”?eth‘?d IS an effective tOOI. 0 stqdy linear eigenmodes in a
N . .~ high intensity beam. In this section, we present two such
in Fig. 1, but without a background electron population. . .

. xamples. First, we simulate the=0, |=0 (d/dz=dld6
Comparing the two cases, we conclude that the presence of a

=0) body mode for a 1.85 GeV proton beam characteristic

small population of background electrons offsets some of th%f the PSR experiment with axial curremt=NyepByuC

spage-f:har_ge force and produces the bell-shape beam den3|=t)ég A, directed axial velocity/,=0.84c, rms equilibrium
profile in Fig. 1. beam radiufx,p=1.7 cm, wall radiug ,=5.0 cm, normal-
ized on-axis (=0) beam intensity s,=w3,/2v5w5,
=0.158 and normalized beam temperatLTr,g:/ybmb,Bf,c2
=7.22<107%. The system is perturbed about the equilib-
rium state by an initial density perturbation which varies
smoothly across the beam radius, with zero net perturbed
charge density. The evolution of the perturbation is followed

from t=0 to t=200w4, . Shown in Fig. 8a) is the fast-

& Fourier-transform spectrum of the density perturbation at one
~ spatial location, from which we can clearly identify the first
o four eigenmodes of the system at frequencies

=19 wg,, 0;=3.87wg,, ©3=583wg, and w,
=7.77Twg,. The corresponding potential perturbation,
S¢n(r), for each eigenmode is plotted in Figlbg We fol-

low the convention in previous analytical and numerical
studies>!? and use the notation=1,2,3 ... to label the
radial mode number of the discrete eigenmodes. Numeri-

FIG. 2. Plots of the normalized density profile of the equilibrium beam ionsca"yl_ O¢y(r) is extracted fromﬁb_(r ,t_) by determining the
with no background electron population. Fourier component ob¢(r,t) oscillating at frequency,, .
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As is evident from Fig. 3, consistent with previous analytical £ ]
and numerical studies, the eigenfuncti®,(r) hasn zeros = 06f ]
. . . . < L i
when plotted as a function of. Plotted in Fig. 4 is the > f ]
dependence of_the elgenfrequenmegon _the beam |nten3|ty_ :; 04 .
parametes, while the rms beam radius is kept constant. Itis C 1
clear that starting fromw,=2nwg, at s,=0, the eigenfre- 02 ]
quencies of the body modes decreases for increasing bear  ,t .

intensity. 0 1 2 3 4 5 6
As a second example, we study the linear surface mode w/wg

for perturbations about a thermal equilibrium ion beam in the

space-charge-dominated regime, with a flat-top density prod-!G- 5. (@ Measured dipole-mode oscillation frequency'vemt;s!rW

file. TheBEST code, operating in its linear stability mode, hasr:;/?R:b%/ LV; and (b) fast-Fourier-transform spectrum for fixed value of

recovered very well-defined eigenmodes with mode struc-""*

tures and eigenfrequencies which agree well with theoretical

predications:*® For the dipole mode with azimuthal mode _ _
number = 1, the dispersion relation for these modes is giverthrough a background charge species provides the free en-

by*3 ergy to drive the classicdlvo-streaminstability, appropri-
ately modified to include the effects of dc space charge, rela-
C:)pb r tivistic kinematics, presence of a conducting wall, etc. A
0=KVp* = 1-- (100 well-documented example is the e—p instability observed in

Yo fw the PSR experiment;? although a similar instability also

wherer, is the radius of the beam edge, angis location of  exists for other ion species, including ion—electron interac-
the conducting wall. In Eq(10), @2,=4nyef/yom, is the  tions in electron storage rings-% When electrons are
ion plasma frequency-squared, a,z;q)b IN2yp=wg, has present, two-stream interactions in heavy ion fuspn dny.e'rs
been assumed in the space-charge-dominated limit. Shown f{€ €xpected to be stronger than the two-stream instabilities
Fig. 5@ is a comparison between plots of the ei(‘:]enfre_ob_served so far in proton machings well as_electr_on ma-
quency versug,,/r, obtained from the simulation&dia- chineg becaus_e of the much larger beam intensity. As an
monds and trianglesand that predicted by Eq10) (solid ~ €xample of using thtBES.T codg to study beam |n_stab|I|t|es,
curves. The system parameters for this simulation are choWe Present here the simulation results of the ion—electron
sen close to the space-charge limit, and the perturbation h¥0-stream instabilities in a typical heavy ion fusion driver
normalized axial wave numbet,V,/wg,=2. It is clear ~and in the PSR experiment. _ . _

from Fig. 5 that the simulation results agree very well with ~ FOr the case of a typical heavy ion fusion driver, we
theoretical predictions. The surface modes are of practicdfonsider a 2.5 GeV C? beam carrying 3000 A current
interest because they can be destabilized by a two-streaRfoPagating in a cylindrical chamber with wall radiog

electron—ion interaction when background electrons aré=9 ¢m. The beam intensity is taken to be near the space-
present. charge-dominated limit, corresponding §3=0.999. The

fractional charge neutralizatidr=n,/ny, is taken to be 10%.
The ion—electron equilibrium solution is plotted in Fig. 1.
After small-amplitude perturbations are excitedtat0, the

It has been recognized recently, both in theoretical studsystem is evolved self-consistently for thousands of oscilla-
ies and in experimental observaticn'S, *that the relative tion periods. Plotted in Fig. 6 is the time history of the beam
streaming motion of the high-intensity beam particlesdensity perturbation at one spatial location. Evidently, after

V. TWO-STREAM INSTABILITY
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. FIG. 8. A plot of the linear growth rate versksV,/wgy, .
FIG. 6. Time history of perturbed densitn, /n, at a fixed spatial location.
After an initial transition period, thé=1 dipole-mode perturbation grows

exponentially. mode is the dominant unstable mode, for which the growth
rate is measured to be l@=0.78vg,. The I=1 dipole-
mode instability observed here has features similar to the
hose instabilitg® in the collisionless limit. The real eigenfre-
quency of the mode is Re=480wg,, and the normalized
wavelength at maximum growth IsV,/w g, =480.4. Plots
of the instability growth rate Inw vs k,Vy/w g, With other
parameters kept constant, are shown in Fig. 8.KNg/w g,
dependence of the growth rate is qualitatively consistent with
the analytical results obtained for uniform-density beamns.
. The important physics here is that only for a certain range of
() t=0/wg, k,Vp/w g, can the collective mode of the beam ions effec-
tively resonate with the electrons and produce instability.

In the simulation results presented above, we have as-
sumed initially cold beam ions in the longitudinal direction
(Apyp|/ppj=0) to maximize the growth rate of the instabil-
ity. Here, py|=y,MpVy, . In general, when the longitudinal
momentum spread of the beam ions is finite, Landau damp-
ing by parallel ion kinetic effects provides a mechanism that
reduces the growth rate. Shown in Fig. 9 is a plot of the
maximum linear growth rate (I®) ., vVersus the normal-
ized initial axial momentum spreakipy, / p, obtained in the
numerical simulations. As evident from Fig. 9, the growth
rate decreases dramatically Ay, /py is increased. When
Apy|/pp| is high enough, about 0.58% for the case in Fig. 9,

an initial transition period, the perturbation grows exponen
tially, which is the expected behavior of an instability during
the linear growth phase. In Fig. 7, tlte-y projection of the
perturbed potentiab¢ at a fixed longitudinal position are
plotted att=0 andt=3.25kg,. Clearly, 5¢ grows to a
moderate amplitude by=3.25kg,, and thel=1 dipole

8¢ (Arbitrary Units)

1.0T ' '
— [
Z o 0.8% ]
- [
” 3@ L
© - 4
-E \; 0.6 r
2 :
o -1 —~ L
= % 0.4 .
== =1 L
o L
0.2- .
~2 I
0.0l s s
0 2 4 6

Apbll/pbll(lo_s)
FIG. 7. Thex—y projection(at a fixed value of) of the perturbed elec-

trostatic potentialé¢(x,y,t) for the ion—electron two-stream instability FIG. 9. The maximum linear growth rate (l@) . of the ion—electron
growing from a small initial perturbation, shown @ t=0 and(b) w gt two-stream instability decreases as the longitudinal momentum spread of the
=3.25. beam ions increases.
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FIG. 10. The maximum growth rate versus normalized beam density fof 17 Density threshold for the two-stream instability as a function of

different values of initial axial momentum spread of the beam ions andyeam ayial momentum spread for different values of fractional charge neu-
fractional charge neutralizatioih=n,/n,=0.08. tralization.

the mode is completely stabil_ized by_longitudinal Landau_On axis for the baseline case, correspondsbﬁg/Zyﬁw%b

damping effects by the beam ions. This result agrees quali= 5 079 and an average current of 35A in the PSR experi-
tatively with theoretical predicatiors.For a fixed value of ment. It is evident from the results shown in Fig. 10 that the
Apy| /Py, the growth rate obtained from the simulation is gr\ih rate is an increasing function of normalized beam

. . _15 - N ~
several times smaller than the theoretical va&ti&® This . ?ensitynb/nbo, but a decreasing function of the longitudinal

. . L L 4momentum spread, which qualitatively agrees with previous
value is derived for a Kapchinskij—ViadimirskikV) beam analytical resultd® As demonstrated in Fig. 9, a larger lon-

W'th. a flat-top density profll_e, _Whereas the s!r_nu_latlons aregitudinal momentum spread induces stronger Landau damp-
carried out for a more realistic thermal equilibrium beam:

ith a bell-shape densitv profile. Because the phase eloc'tmg by parallel kinetic effects and therefore reduces the
Wi shap S.'ty profiie. because Ihe phase v ! Eﬂrovvth rate of the instability, whereas higher beam intensity
of the unstable mode in the longitudinal direction is far re-

- S provides more free energy to drive a stronger instability.
moved from the electron velocn)_/ d'.Str'bu“O|n"/kZ|>Ve As a result of the presence of several important damping
+v+g, We do not expect the longitudinal electron tempera-

ture to significantly affect the growth rate of the instability. mechanisms, an instability threshold is observed in the simu-

The nonlinear space-charge potential due to the bell-shaplgtlons' Plotted in Fig. 11 is the instability threshold in terms

density profiles induces substantial tune spread in the trané?—f the normalized beam density, /ny, as a function of mo-

verse direction, which provides a growth rate reduction™entum spread\py /py for different values of fractional
mechanism for the two-stream instability; charge neutralizatiof Evidently, larger momentum spread

Similar simulations have been carried out for the e—pand smaller fractional charge neutralization imply a higher

two-stream instability in the PSR experiment, even thougHjenSity threshold for theAinsAtabiIity to occur. For a specified
the numerical values of the key parameters of the instabilityvalue of f, if (Apy/pp.np/nye) fall below the curves in
such as the growth rate and the real frequency, differs byig. 11, then there is no two-stream instability. Finally, in
several orders of magnitude compared with the ion—electroffig- 12, we simulate an unstable case to its fully nonlinear
instability in a heavy ion fusion driver. In the parameter re-phase. This case corresponds rtg/np,=1, wgb/Z'yngb
gime of the PSR experiment, the simulation results agree=0.079,f=0.1, andAp, =0=Apg att=0. In Fig. 12, the
well with the experimental observations in terms of the realtime history of the density perturbations at fixed spatial lo-
frequency, wavelength and mode struct(ifeor brevity, we  cation is shown for both species. There are basically two
present here only the threshold properties of the instabilityphases for the evolution of the instability. The first phase is
Detailed numerical investigations of the e—p instability havethe linear stage where the density perturbations for both spe-
been carried out for a wide range of beam intensities angies grow exponentially. However, due to the large mass ra-
fractional charge neutralization. The space-charge intensit{io between the protons and the electrons, the density pertur-
varies from moderate to strong, corresponding to 0s0§8  bation amplitude for the electrons is much larger than that for
= a)gb/z'yngbgo_]_Sg' Where(:)’ng:‘]'ﬂ'ﬁbeg/')’bmb is the the protons. When the Iinegr growth saturates, the saturation
on-axis § =0) ion plasma frequency-squared. The fractionallevel for the electron density perturbation is therefore much
charge neutralizatiorhzﬁe/ﬁb is allowed to vary from 5% Iarger. The ;aturation Igvel for the electron density perturpa-
to 25%, whereR, and A, are the electron and beam ion tion shown in Fig. 12 is .abput 8%, whereas the saturation
number,densitiese on axig £0). In Fig. 10, for the case level for the proton density is very sma(:llbss. than 0.1%.

PO . B ) The second phase of the instability is the nonlinear
where f=n,/n,=0.08, the maximum growth rate in the npage starting approximately &t 500k, , during which
simulations is plotted versus the normalized beam density,e electron density perturbation level stays nearly constant
Ny /Ny for different values of initial axial momentum spread. around the 8% level. In this phase, the electron density per-
Here,ﬁb0=9.41>< 10 cm 2 is the beam ion number density turbation shows no extra dynamical behavior other than the
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0 () ' ' ' nonlinear operation, and used to study both linear stability

properties and nonlinear beam dynamics. Linear eigenmodes
of high intensity charged particle beams, such as the body
modes and the surface modes, have been systematically stud-
ied using theBEST code. In particular, large-scale parallel
simulations have also been carried out to study the ion—
electron two-stream instability in the very-high-intensity
heavy ion beams envisioned for heavy ion fusion applica-
tions, and for the e—p two-stream instability observed in the
PSR experiment. Important properties of this instability were
investigated numerically, and are found to be in qualitative
agreement with theoretical predictions and the PSR experi-
ment. Numerically, the instability threshold was found to de-
crease with increasing fractional charge neutralization, and
increase with increasing axial momentum spread of the beam
particles. In the nonlinear phase, the simulation results
showed that the instability first saturates at a relatively low
level, and subsequently grows to a much larger level. Even
though a wide range of collective effects in high intensity
charged particle beams have been studied, the present simu-
lations have been curried out for a long coasting beam. In-
vestigations of the effects of finite bunch length, inclusion of
electron production mechanisms and other extensions have
been planned for future work.
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