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Nonlinear d f simulations of collective effects in intense charged
particle beams a…

Hong Qinb)

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

~Received 7 November 2002; accepted 6 December 2002!

A nonlinear df particle simulation method based on the Vlasov–Maxwell equations has been
recently developed to study collective processes in high-intensity beams, where space-charge and
magnetic self-field effects play a critical role in determining the nonlinear beam dynamics.
Implemented in the Beam Equilibrium, Stability and Transport~BEST! code@H. Qin, R. C. Davidson,
and W. W. Lee, Phys. Rev. ST Accel. Beams3, 084401~2000!; 3, 109901~2000!#, the nonlineardf
method provides a low-noise and self-consistent tool for simulating collective interactions and
nonlinear dynamics of high-intensity beams in modern and next generation accelerators and storage
rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear
eigenmodes of high intensity charged particle beams can be systematically studied using theBEST

code. Simulation results for the electron–proton two-stream instability in the Proton Storage Ring
experiment@R. Maceket al., in Proceedings of the Particle Accelerator Conference, Chicago, 2001
~IEEE, Piscataway, NJ, 2001!, Vol. 1, p. 688# at the Los Alamos National Laboratory agree well with
experimental observations. Large-scale parallel simulations have also been carried out for the
ion–electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy
ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream
instability has a dipole-mode~hose-like! structure and can be stabilized by a modest axial
momentum spread of the beam particles. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1559008#
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I. INTRODUCTION

In contemporary periodic focusing accelerators a
transport systems for applications such as spallation neu
sources, heavy ion fusion, and nuclear waste transmuta
the beam intensity has increased to regimes where collec
processes and self-field effects play a significant role. I
therefore increasingly important to improve our theoreti
understanding of the influence of the intense self-fields p
duced by the beam space charge and current on det
equilibrium, stability and transport properties. A kinet
model based on the nonlinear Vlasov–Maxwell equatio
has been developed to study self-consistently the collec
processes and self-field effects in high intensity charged
ticle beams.1,2 With the help of various analytical technique
the kinetic approach has been successfully applied to a w
range of beam physics problem involving strong spa
charge and high current. For example, a nonlinear kin
stability theorem has been proved for charged particle be
with arbitrary space-charge intensity in the smooth focus
approximation.2–4 However, many important questions a
still unaccessible by analytical methods.

Recently, thedf formalism, a low-noise, nonlinear per
turbative particle simulation technique, has been develo
to solve the nonlinear Vlasov–Maxwell equations for inten
beam applications.5–9 The df formalism has been imple
mented in the Beam Equilibrium, Stability and Transp

a!Paper KI1 4, Bull. Am. Phys. Soc.47, 181 ~2002!.
b!Invited speaker.
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~BEST! code at the Princeton Plasma Physics Laboratory
addition, theBEST code is fully three-dimensional and ha
multi-species capability. It has been used to investigate
electron-ion two-stream instability,7,9 temperature anisotropy
instability,8 periodically-focusing beam propagation6 and
other collective processes. Especially, simulations carried
by the BEST code for the electron–proton~e–p! two-stream
instability in the Proton Storage Ring~PSR! at the Los Ala-
mos National Laboratory has produced results in good ag
ment with experimental observations.

In this paper, we will present a comprehensive desc
tion of the simulation capabilities of theBEST code and its
applications to beam physics problems involving stro
space charge and high current. The paper is organize
follows. The theoretical model anddf formalism are outlined
in Sec. II. Following a short description of the numerica
solved equilibrium in Sec. III, we present in Sec. IV simul
tion results for two classes of collective modes, i.e., the bo
mode and the surface mode. In Sec. V, the electron–ion t
stream instability is studied in detail for a typical proto
beam in the PSR experiment at moderate beam intensity,
for a cesium beam with very high beam intensity for hea
ion fusion drivers. We summarize the conclusions and d
cuss future work in Sec. VI.

II. THEORETICAL MODEL AND THE df FORMALISM
FOR HIGH-INTENSITY CHARGED PARTICLE
BEAMS

The theoretical model employed here to study the h
intensity charged particle beams is based on the nonlin
8 © 2003 American Institute of Physics
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Vlasov–Maxwell equations.1,2 We consider a thin, continu
ous, high-intensity charged particle beam (j 5b) propagating
in thez-direction. Possible background electron and ion co
ponents (j 5e,i ) are allowed in the system. A backgroun
population of electrons, for example, can result by second
emission when energetic ions or electrons strike the cham
wall, or through the ionization of background neutral gas
the beam particles. Each charge component is described
distribution function f j (x,p,t)1,2 in the phase space (x,p).
The charge components (j 5b,e,i ) propagate in the
z-direction with characteristic axial momentumg jmjb j c,
where Vj5b j c is the average directed axial velocity,g j

5(12b j
2)21/2 is the relativistic mass factor,ej and mj are

the charge and rest mass, respectively, of aj th species par-
ticle, andc is the speed of lightin vacuo. While the nonlinear
d f formalism outlined here is readily adapted to the case
a periodic applied focusing field,10 for the present purpose
we make use of asmooth-focusingmodel in which the ap-
plied focusing force is described byFj

foc52g jmjvb j
2 x' ,

wherex'5xêx1yêy is the transverse displacement of a p
ticle from the beam axis, andvb j5const is the effective
applied betatron frequency for transverse oscillations. F
thermore, in a frame of reference moving with axial veloc
b j c, the motion of aj th species particle is assumed to
nonrelativistic. The space-charge intensity is allowed to
arbitrarily large, subject only to transverse confinement
each charge component. In a two-species system consi
of beam ions and stationary background electrons, for
ample, the beam ions are confined by the applied focus
force, while the background electrons are confined in
transverse plane by the space-charge potentialf(x,t) pro-
duced by the excess ion charge. In the electrostatic and m
netostatic approximations, we represent the self-electric
self-magnetic fields as Es52“f(x,t) and Bs5“

3Az(x,t)êz . The nonlinear Vlasov–Maxwell equations ca
be approximated by1,2

H ]

]t
1v•

]

]x
2Fg jmjvb j

2 x'1ej S ¹f2
vz

c
¹'AzD G

•

]

]pJ f j~x,p,t !50, ~1!

and

¹2f524p(
j

ejE d3p f j~x,p,t !,

~2!

¹2Az52
4p

c (
j

ejE d3pvzf j~x,p,t !.

In the nonlineardf formalism,5–9 we divide the total
distribution function into two parts,f j5 f j 01d f j , wheref j 0

is a knownequilibrium solution (]/]t50) to the nonlinear
Vlasov–Maxwell equations~1! and ~2!, and the numerica
simulation is carried out to determine the detailed nonlin
evolution of the perturbed distribution functiond f j . This is
accomplished by advancing the weight function defined
wj[d f j / f j , together with the particles’ positions and m
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menta. The equations of motion for the particles, obtain
from the characteristics of the nonlinear Vlasov equation~1!,
are given by

dx' j i

dt
5~g jmj !

21p' j i ,

dzji

dt
5vz j i5b j c1g j

23mj
21~pz ji2g jmjb j c!, ~3!

dpj i

dt
52g jmjvb j

2 x' j i 2ej S ¹f2
vz j i

c
¹'AzD .

Here the subscript ‘‘j i ’’ labels the i th simulation particle of
the j th species. Furthermore, the dynamical equations forwji

is5,7–9

dwji

dt
52~12wji !

1

f j 0

] f j 0

]p
•dS dpj i

dt D ,

~4!

dS dpj i

dt D[2ej S“df2
vz j i

c
“'dAzD ,

where df5f2f0 and dAz5Az2Az0. Here, the equilib-
rium solutions (f0 , Az0 , f j 0) solve the steady-state (]/]t
50) Vlasov–Maxwell equations~1! and~2!. A wide variety
of axisymmetric equilibrium solutions to Eqs.~1! and ~2!
have been investigated in the literature.1,2,11 The perturbed
distributiond f j is obtained through the weighted Klimontov
ich representation,1,2

d f j5
Nj

Ns j
(
i 51

Ns j

wji d~x2xj i !d~p2pj i !, ~5!

whereNj is the total number of actualj th species particles
andNs j is the total number ofsimulationparticles for thej th
species. Maxwell’s equations are also expressed in term
the perturbed fields and perturbed density according to

¹2df524p(
j

ejdnj , ¹2dAz52
4p

c (
j

d j z j ,

~6!

where

dnj5
Nj

Ns j
(
i 51

Ns j

wji S~x2xj i !,

~7!

d j z j5
ejNj

Ns j
(
i 51

Ns j

vz j iwji S~x2xj i !.

Here,S(x2xj i ) is a shape function distributing particles o
the grids in configuration space.7

The nonlineardf particle simulations are carried out b
iteratively advancing the particle motions, including th
weights they carry, according to Eqs.~3! and~4!, and updat-
ing the fields by solving the perturbed Maxwell’s equatio
~6! with appropriate boundary conditions. Even though it is
perturbative approach, thedf method isfully nonlinear and
simulates completely the original nonlinear Vlasov–Maxw
equations. Compared with conventional particle-in-cell~PIC!
simulations, the noise level indf simulations is significantly
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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reduced. The dominant numerical noise mechanisms in
ticle simulations, such as numerical collisions, are statisti
The df method reduces the noise level in the simulatio
because the statistical noise, which is of orderO(Ns

21/2) for
the total distribution function in the conventional particle-i
cell method, is only associated with the perturbed distri
tion function in thedf method. If the same number of simu
lation particles is used in the two approaches, then the n
level in thedf method is reduced by a factor off /d f relative
to the conventional PIC method. To achieve the same a
racy for the perturbed fields, the number of simulation p
ticles used in thedf method is reduced by a factor o
( f /d f )2. For the e–p two-stream instability in the PSR e
periment studied in Sec. V, we obtain satisfactory simulat
results with about 105 simulation particles using thedf
method. If the conventional PIC method were used, then
a nonlinear saturation level of 1%, about 104 times more
simulation particles would be needed to achieve the sa
accuracy. When studying the ion–electron two-stream in
bility in a high intensity heavy ion beam for heavy ion fusio
drivers, it takes a relatively long time to simulate the ins
bility due to the large mass ratio between the ions and
electrons @me /mb51/(18363133)54.131026, for ce-
sium#, and the fact that the growth rate of the instability
much smaller than the real frequency of the eigenmode.
low-noisedf method is even more desirable in such applic
tions.

The df method can also be used to study detailed lin
eigenmode and stability properties, provided the factor
2wji ) in Eq. ~4! is approximated by unity, and the forcin
terms in Eq. ~3! are replaced by the unperturbed forc
Implementation of the 3D multispecies nonlineardf simula-
tion method described above is embodied in theBEST

code7–9 developed at the Princeton Plasma Physics Lab
tory. The code advances the particle motions using a le
frog or Runge–Kutta method, and solves Maxwell’s equ
r-
a

in
th
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tions in cylindrical geometry. For those fast particle motio
which require much larger sampling frequency 1/Dt than the
frequency of the mode being studied, the code uses an a
batic field pusher to advance the particles many time st
without solving for the perturbed fields. The upper limit fo
Dt, the time step to advance the particles’ phase space p
tion, is normally determined by the Courant condition. F
the e–p two-stream instability, the electrons’ transverse m
tion requires the smallestDt, and the mode frequency i
comparable to the electron bounce frequency in the tra
verse direction. We can therefore update the electrons’ ph
space positions more often than the field. On the IBM
supercomputer at the National Energy Research Scien
Computing Center, theBEST code typically advances 4.2
31011 particles3time-steps when simulating the electron
ion two-stream instability in high intensity beams.

III. EQUILIBRIUM

For practical accelerator experiments, it is important
obtain the equilibrium (]/]t50) distribution functionsf j 0 of
the quiescent beam (j 5b) and any other possible charge
particle components intentionally or unintentionally intr
duced into the system. From the equilibrium distributi
function f j 0, the rms radius, transverse emittance and ot
important beam parameters can be readily calculated.
also necessary to know, analytically or numerically, the eq
librium distribution function f j 0 in order to carry out the
particle simulations for the perturbed distribution functio
d f j .

Although there are many possible choices off j 0,1,2,11 in
the present study we assume that the background equilib
distribution (]/]t50) is the self-consistent bi-Maxwellian
distribution with temperatureTj'5const in thex2y plane,
and temperatureTj i5const in thez-direction. That is,
f j 0~r ,p!5
n̂ j

~2pmj !
3/2g j

5/2Tj'Tj i
1/2

expH 2
~pz2g jmjb j c!2

2g j
3mjTj i

J expH 2
p'

2 /2g jmj1g jmjvb j
2 r 2/21ej~f02b jAz0!

Tj'
J , ~8!
e
s

set
We

ty,
ith
-
ce-
where n̂ j is the density on axis (r 50) of the j th species.
Here,f0 andAz0 are equilibrium self-field potentials, dete
mined self-consistently from the nonlinear Maxwell equ
tions,

1

r

]

]r
r

]f0~r !

]r
524p(

j
ejE d3p f j 0~r ,p!,

~9!
1

r

]

]r
r

]Az0~r !

]r
52

4p

c (
j

ejE d3pvzf j 0~r ,p!.

Unlike the Kapchinskij–Vladimirskij~KV ! distribution,1,2

which is unstable due to the highly inverted distribution
phase space, a single-species charged particle beam wi
-

bi-

Maxwellian distribution in Eq.~8! has been proven to b
linearly and nonlinearly stable2–4 for transverse perturbation
with kz50. Numerically, Eqs.~8! and ~9! can be easily
solved. We demonstrate the equilibrium solutions using a
of beam parameters typical for heavy ion fusion drivers.
consider a Cs1 beam with rest massmb5133mp , wheremp

is the proton rest mass, and kinetic energy (gb21)mbc2

52.5 GeV. To study the ion-electron two-stream instabili
an electron poplulation is introduced into the system w
Ve50 andvbe50 ~corresponding to axially stationary elec
trons!. The beam intensity is taken to be near the spa

charge-dominated limit, corresponding tosb[v̂pb
2 /2gb

2vbb
2

50.999. The fractional charge neutralizationf [n̂e /n̂b is
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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taken to be 10%, wheren̂e andn̂b are the electron and beam
ion densities on axis (r 50). Plotted in Fig. 1 are the nor
malized equilibrium density profiles for the cesium ions a

electrons,nj
0(r )/n̂ j5(1/n̂ j )*d3p f j 0(r ,p,t) ( j 5b,e), which

are readily obtained once the equilibrium potentialsf0 and
Az0 are solved numerically from Eqs.~8! and~9!. The trans-
verse temperatures of the electrons and ions in Fig. 1
chosen to beTb' /gbmbVb

251.131026 and Te' /gbmbVb
2

52.4731026, such that the ion and electron density profil
overlap radially. The overlapping of the electron density p
file with that of the ions is expected to maximize the tw
stream interaction and therefore the growth rate. In
space-charge-dominated limit (sb→1), if there is no electron
population, the beam will have a flat-top density profile
illustrated in Fig. 2. Plotted in Fig. 2 is the beam dens
profile with the same beam intensity parametersb as the case
in Fig. 1, but without a background electron populatio
Comparing the two cases, we conclude that the presence
small population of background electrons offsets some of
space-charge force and produces the bell-shape beam de
profile in Fig. 1.

FIG. 1. Plots of the normalized density profiles of the equilibrium beam i
and background electrons.

FIG. 2. Plots of the normalized density profile of the equilibrium beam io
with no background electron population.
Downloaded 09 Jun 2003 to 198.35.4.108. Redistribution subject to AIP
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IV. EIGENMODE ANALYSIS IN HIGH-INTENSITY
BEAMS

As mentioned in Sec. II, thedf particle simulation
method is an effective tool to study linear eigenmodes i
high intensity beam. In this section, we present two su
examples. First, we simulate thekz50, l 50 (]/]z5]/]u
50) body mode for a 1.85 GeV proton beam characteris
of the PSR experiment with axial currentI b5Nbebbbc
569 A, directed axial velocityVb50.84c, rms equilibrium
beam radiusRb051.7 cm, wall radiusr w55.0 cm, normal-
ized on-axis (r 50) beam intensity sb5v̂pb

2 /2gb
2vbb

2

50.158 and normalized beam temperatureTb /gbmbbb
2c2

57.2231026. The system is perturbed about the equili
rium state by an initial density perturbation which vari
smoothly across the beam radius, with zero net pertur
charge density. The evolution of the perturbation is follow
from t50 to t5200vbb

21 . Shown in Fig. 3~a! is the fast-
Fourier-transform spectrum of the density perturbation at
spatial location, from which we can clearly identify the fir
four eigenmodes of the system at frequenciesv1

51.94vbb , v253.87vbb , v355.83vbb and v4

57.77vbb . The corresponding potential perturbatio
dfn(r ), for each eigenmode is plotted in Fig. 3~b!. We fol-
low the convention in previous analytical and numeric
studies,2,12 and use the notationn51,2,3, . . . to label the
radial mode number of the discrete eigenmodes. Num
cally, dfn(r ) is extracted fromdf(r ,t) by determining the
Fourier component ofdf(r ,t) oscillating at frequencyvn .

s

s

FIG. 3. ~a! Fast-Fourier-transform~FFT! spectrum of perturbed density
measured in the simulation, and~b! the corresponding eigenmode structure
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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As is evident from Fig. 3, consistent with previous analytic
and numerical studies, the eigenfunctiondfn(r ) hasn zeros
when plotted as a function ofr. Plotted in Fig. 4 is the
dependence of the eigenfrequenciesvn on the beam intensity
parametersb while the rms beam radius is kept constant. It
clear that starting fromvn52nvbb at sb50, the eigenfre-
quencies of the body modes decreases for increasing b
intensity.

As a second example, we study the linear surface m
for perturbations about a thermal equilibrium ion beam in
space-charge-dominated regime, with a flat-top density p
file. TheBEST code, operating in its linear stability mode, h
recovered very well-defined eigenmodes with mode str
tures and eigenfrequencies which agree well with theoret
predications.2,13 For the dipole mode with azimuthal mod
numberl 51, the dispersion relation for these modes is giv
by13

v5kzVb6
v̂pb

A2gb

A12
r b

2

r w
2
, ~10!

wherer b is the radius of the beam edge, andr w is location of
the conducting wall. In Eq.~10!, v̂pb

2 54pn̂beb
2/gbmb is the

ion plasma frequency-squared, andv̂pb /A2gb.vbb has
been assumed in the space-charge-dominated limit. Show
Fig. 5~a! is a comparison between plots of the eigenf
quency versusr w /r b obtained from the simulations~dia-
monds and triangles! and that predicted by Eq.~10! ~solid
curves!. The system parameters for this simulation are c
sen close to the space-charge limit, and the perturbation
normalized axial wave numberkzVb /vbb52p. It is clear
from Fig. 5 that the simulation results agree very well w
theoretical predictions. The surface modes are of pract
interest because they can be destabilized by a two-str
electron–ion interaction when background electrons
present.

V. TWO-STREAM INSTABILITY

It has been recognized recently, both in theoretical st
ies and in experimental observations,2,13–25 that the relative
streaming motion of the high-intensity beam partic

FIG. 4. Dependence of the eigenfrequencies on the beam intensity pa
etersb .
Downloaded 09 Jun 2003 to 198.35.4.108. Redistribution subject to AIP
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through a background charge species provides the free
ergy to drive the classicaltwo-streaminstability, appropri-
ately modified to include the effects of dc space charge, r
tivistic kinematics, presence of a conducting wall, etc.
well-documented example is the e–p instability observed
the PSR experiment,21,22 although a similar instability also
exists for other ion species, including ion–electron inter
tions in electron storage rings.23–25 When electrons are
present, two-stream interactions in heavy ion fusion driv
are expected to be stronger than the two-stream instabil
observed so far in proton machines~as well as electron ma
chines! because of the much larger beam intensity. As
example of using theBEST code to study beam instabilities
we present here the simulation results of the ion–elect
two-stream instabilities in a typical heavy ion fusion driv
and in the PSR experiment.

For the case of a typical heavy ion fusion driver, w
consider a 2.5 GeV Cs1 beam carrying 3000 A curren
propagating in a cylindrical chamber with wall radiusr w

59 cm. The beam intensity is taken to be near the spa
charge-dominated limit, corresponding tosb50.999. The
fractional charge neutralizationf [n̂e /n̂b is taken to be 10%.
The ion–electron equilibrium solution is plotted in Fig.
After small-amplitude perturbations are excited att50, the
system is evolved self-consistently for thousands of osci
tion periods. Plotted in Fig. 6 is the time history of the bea
density perturbation at one spatial location. Evidently, af

m-

FIG. 5. ~a! Measured dipole-mode oscillation frequency versusr b /r w

.A2Rb0 /r w , and ~b! fast-Fourier-transform spectrum for fixed value o
r b /r w50.47.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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an initial transition period, the perturbation grows expone
tially, which is the expected behavior of an instability durin
the linear growth phase. In Fig. 7, thex2y projection of the
perturbed potentialdf at a fixed longitudinal position are
plotted at t50 and t53.25/vbb . Clearly, df grows to a
moderate amplitude byt53.25/vbb , and the l 51 dipole

FIG. 6. Time history of perturbed densitydnb /n̂b at a fixed spatial location.
After an initial transition period, thel 51 dipole-mode perturbation grow
exponentially.

FIG. 7. Thex2y projection~at a fixed value ofz) of the perturbed elec-
trostatic potentialdf(x,y,t) for the ion–electron two-stream instabilit
growing from a small initial perturbation, shown at~a! t50 and~b! vbbt
53.25.
Downloaded 09 Jun 2003 to 198.35.4.108. Redistribution subject to AIP
-

mode is the dominant unstable mode, for which the grow
rate is measured to be Imv50.78vbb . The l 51 dipole-
mode instability observed here has features similar to
hose instability26 in the collisionless limit. The real eigenfre
quency of the mode is Rev5480vbb , and the normalized
wavelength at maximum growth iskzVb /vbb5480.4. Plots
of the instability growth rate Imv vs kzVb /vbb , with other
parameters kept constant, are shown in Fig. 8. ThekzVb /vbb

dependence of the growth rate is qualitatively consistent w
the analytical results obtained for uniform-density beam13

The important physics here is that only for a certain range
kzVb /vbb can the collective mode of the beam ions effe
tively resonate with the electrons and produce instability.

In the simulation results presented above, we have
sumed initially cold beam ions in the longitudinal directio
(Dpbi /pbi50) to maximize the growth rate of the instabi
ity. Here, pbi5gbmbVb . In general, when the longitudina
momentum spread of the beam ions is finite, Landau da
ing by parallel ion kinetic effects provides a mechanism t
reduces the growth rate. Shown in Fig. 9 is a plot of t
maximum linear growth rate (Imv)max versus the normal-
ized initial axial momentum spreadDpbi /pbi obtained in the
numerical simulations. As evident from Fig. 9, the grow
rate decreases dramatically asDpbi /pbi is increased. When
Dpbi /pbi is high enough, about 0.58% for the case in Fig.

FIG. 8. A plot of the linear growth rate versuskzVb /vbb .

FIG. 9. The maximum linear growth rate (Imv)max of the ion–electron
two-stream instability decreases as the longitudinal momentum spread o
beam ions increases.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the mode is completely stabilized by longitudinal Land
damping effects by the beam ions. This result agrees qu
tatively with theoretical predications.15 For a fixed value of
Dpbi /pbi , the growth rate obtained from the simulation
several times smaller than the theoretical value.2,13–15 This
difference can be attributed to the fact that the theoret
value is derived for a Kapchinskij–Vladimirskij~KV ! beam
with a flat-top density profile, whereas the simulations
carried out for a more realistic thermal equilibrium bea
with a bell-shape density profile. Because the phase velo
of the unstable mode in the longitudinal direction is far
moved from the electron velocity distributionuv/kzu@Ve

1vTei , we do not expect the longitudinal electron tempe
ture to significantly affect the growth rate of the instabilit
The nonlinear space-charge potential due to the bell-sh
density profiles induces substantial tune spread in the tr
verse direction, which provides a growth rate reduct
mechanism for the two-stream instability.

Similar simulations have been carried out for the e
two-stream instability in the PSR experiment, even thou
the numerical values of the key parameters of the instabi
such as the growth rate and the real frequency, differs
several orders of magnitude compared with the ion–elec
instability in a heavy ion fusion driver. In the parameter r
gime of the PSR experiment, the simulation results ag
well with the experimental observations in terms of the r
frequency, wavelength and mode structure.7 For brevity, we
present here only the threshold properties of the instabi
Detailed numerical investigations of the e–p instability ha
been carried out for a wide range of beam intensities
fractional charge neutralization. The space-charge inten
varies from moderate to strong, corresponding to 0.008<sb

5v̂pb
2 /2gb

2vbb
2 <0.158, wherev̂pb

2 54pn̂beb
2/gbmb is the

on-axis (r 50) ion plasma frequency-squared. The fraction
charge neutralizationf [n̂e /n̂b is allowed to vary from 5%
to 25%, wheren̂e and n̂b are the electron and beam io
number densities on axis (r 50). In Fig. 10, for the case
where f 5n̂e /n̂b50.08, the maximum growth rate in th
simulations is plotted versus the normalized beam den
n̂b /n̂b0 for different values of initial axial momentum sprea
Here,n̂b059.413108 cm23 is the beam ion number densit

FIG. 10. The maximum growth rate versus normalized beam density
different values of initial axial momentum spread of the beam ions

fractional charge neutralizationf 5n̂e /n̂b50.08.
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on axis for the baseline case, corresponds tov̂pb
2 /2gb

2vbb
2

50.079 and an average current of 35 A in the PSR exp
ment. It is evident from the results shown in Fig. 10 that t
growth rate is an increasing function of normalized be
densityn̂b /n̂b0, but a decreasing function of the longitudin
momentum spread, which qualitatively agrees with previo
analytical results.15 As demonstrated in Fig. 9, a larger lon
gitudinal momentum spread induces stronger Landau da
ing by parallel kinetic effects and therefore reduces
growth rate of the instability, whereas higher beam intens
provides more free energy to drive a stronger instability.

As a result of the presence of several important damp
mechanisms, an instability threshold is observed in the sim
lations. Plotted in Fig. 11 is the instability threshold in term
of the normalized beam densityn̂b /n̂b0 as a function of mo-
mentum spreadDpbi /pbi for different values of fractional
charge neutralizationf. Evidently, larger momentum sprea
and smaller fractional charge neutralization imply a high
density threshold for the instability to occur. For a specifi
value of f, if ( Dpbi /pbi ,n̂b /n̂b0) fall below the curves in
Fig. 11, then there is no two-stream instability. Finally,
Fig. 12, we simulate an unstable case to its fully nonlin
phase. This case corresponds ton̂b /n̂b051, v̂pb

2 /2gb
2vbb

2

50.079, f 50.1, andDpbi505Dpei at t50. In Fig. 12, the
time history of the density perturbations at fixed spatial
cation is shown for both species. There are basically t
phases for the evolution of the instability. The first phase
the linear stage where the density perturbations for both s
cies grow exponentially. However, due to the large mass
tio between the protons and the electrons, the density pe
bation amplitude for the electrons is much larger than that
the protons. When the linear growth saturates, the satura
level for the electron density perturbation is therefore mu
larger. The saturation level for the electron density pertur
tion shown in Fig. 12 is about 8%, whereas the saturat
level for the proton density is very small~less than 0.1%!.

The second phase of the instability is the nonline
phase, starting approximately att5500/vbb , during which
the electron density perturbation level stays nearly cons
around the 8% level. In this phase, the electron density p
turbation shows no extra dynamical behavior other than

r
d
FIG. 11. Density threshold for the two-stream instability as a function
beam axial momentum spread for different values of fractional charge n
tralization.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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initial nonlinear saturation. However, the proton density p
turbation grows first slowly and then very fast aftert
51400/vbb to a high level, considerably larger than that
the electron density perturbation. This simulation result s
gests that the late-time growth of the e–p instability obser
experimentally in PSR has likely passed the initial line
growth and saturation phase, and entered the second sta
strong nonlinear growth evident in Fig. 12. It also points
the possible physical mechanism proposed by Chann27

that due to the large mass ratio, the electron density pe
bation quickly saturates long before the proton density p
turbation becomes sizable and the large electron density
tuation level then provides a newly developed backgrou
force that drives the proton density perturbations to a la
level on a longer time scale.27

VI. CONCLUSIONS

In conclusion, a 3D multispecies nonlineardf particle
simulation method has been developed to study collec
processes in intense charged particle beams described
consistently by the Vlasov–Maxwell equations. Compa
with conventional particle-in-cell simulations, the noise lev
in nonlinear perturbative particle simulations is significan
reduced. Implemented in theBEST code, thed f formalism
has been tested and applied in different beam paramete
gimes. The code can be easily switched between linear

FIG. 12. Linear and nonlinear phases of the e–p two-stream instab
Plotted is the time history of the density perturbation for the~a! protons and
~b! electrons at a fixed spatial location.
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nonlinear operation, and used to study both linear stab
properties and nonlinear beam dynamics. Linear eigenmo
of high intensity charged particle beams, such as the b
modes and the surface modes, have been systematically
ied using theBEST code. In particular, large-scale parall
simulations have also been carried out to study the io
electron two-stream instability in the very-high-intensi
heavy ion beams envisioned for heavy ion fusion appli
tions, and for the e–p two-stream instability observed in
PSR experiment. Important properties of this instability we
investigated numerically, and are found to be in qualitat
agreement with theoretical predictions and the PSR exp
ment. Numerically, the instability threshold was found to d
crease with increasing fractional charge neutralization,
increase with increasing axial momentum spread of the be
particles. In the nonlinear phase, the simulation res
showed that the instability first saturates at a relatively l
level, and subsequently grows to a much larger level. E
though a wide range of collective effects in high intens
charged particle beams have been studied, the present s
lations have been curried out for a long coasting beam.
vestigations of the effects of finite bunch length, inclusion
electron production mechanisms and other extensions h
been planned for future work.
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