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Three-dimensional multispecies nonlinear perturbative particle simulations
of collective processes in intense particle beams
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Collective processes in intense charged particle beams described self-consistently by the Vlasov-
Maxwell equations are studied using a 3D multispecies nonlinear perturbative particle simulation method.
The newly developed beam equilibrium, stability, and transport (BEST) code is used to simulate the non-
linear stability properties of intense beam propagation, surface eigenmodes in a high-intensity beam, and
the electron-proton (e-p) two-stream instability observed in the Proton Storage Ring (PSR) experiment.
Detailed simulations in a parameter regime characteristic of the PSR experiment show that the dipole-
mode two-stream instability is stabilized by a modest spread (about 0.1%) in axial momentum of the
beam particles.

PACS numbers: 29.27.Bd, 41.75. - i, 41.85. -p
I. INTRODUCTION

Periodic focusing accelerators and transport systems
[1–4] have a wide range of applications ranging from
basic scientific research to applications such as spallation
neutron sources, heavy ion fusion, and nuclear waste
transmutation. As the high beam currents and charge
densities of practical interest, it is increasingly important
to develop an improved theoretical understanding of the
influence of the intense self-fields produced by the beam
space charge and current on detailed equilibrium, stability,
and transport properties. For a one-component high-
intensity beam, considerable progress has been made in
describing the self-consistent evolution of the beam distri-
bution function fb�x, p, t� and the self-generated electric
and magnetic fields in kinetic analysis [5–11] based
on the Vlasov-Maxwell equations. In many practical
accelerator applications, however, an (unwanted) second
charge component is present. For example, a background
population of electrons can result by secondary emission
when energetic beam ions strike the chamber wall, or
through ionization of background neutral gas by the beam
ions. When a second charge component is present, it
has been recognized for many years, both in theoretical
studies and in experimental observations [12–21], that
the relative streaming motion of the high-intensity beam
particles through the background charge species provides
the free energy to drive the classical two-stream instability
[22], appropriately modified to include the effects of
dc space charge, relativistic kinematics, presence of a
conducting wall, etc. A well-documented example is the
electron-proton (e-p) instability observed in the Proton
Storage Ring (PSR) [17,18], although a similar instability
also exists for other ion species including (for example)
electron-ion interactions in electron storage rings [19–21].

Recently, the df formalism, a low-noise, nonlinear per-
turbative particle simulation technique, has been developed
for intense beam applications and applied to matched-beam
propagation in a periodic focusing field [23,24] and other
1098-4402�00�3(8)�084401(8)$15.00
related studies. The present paper reports recent advances
in applying the df formalism to investigate nonlinear col-
lective processes in intense charged particle beams. The
BEST (beam equilibrium, stability, and transport) code [25]
described here is a newly developed 3D multispecies non-
linear perturbative particle simulation code, which can be
applied to a wide range of important collective processes in
intense beams, such as the electron-ion two-stream insta-
bility [12–18] and the periodically focused beam propa-
gation [11]. While several features of the 3D BEST code
are summarized in Ref. [25], together with initial simula-
tion results, the present paper is the first comprehensive
description of the simulation capability and its application
to the nonlinear dynamics of the two-stream instability.
The 3D and multispecies capability of the simulation code
are required by the physics of the collective processes un-
der investigation. In general, collective processes have 3D
spatial structures, and a second or third species of charged
particle is introduced into the system either intentionally
or unintentionally.

Following a description of the nonlinear df formal-
ism (Sec. II), this paper presents detailed simulation re-
sults (Sec. III) for the electron-ion two-stream instability,
with particular emphasis on the parameter regime char-
acteristic of the PSR experiment [17,18]. Most impor-
tantly, the simulations show that the instability can be
stabilized by a modest spread in axial momentum of the
beam particles.

II. NONLINEAR df FORMALISM

The theoretical model employed here that incorporates
collective effects is based on the nonlinear Vlasov-
Maxwell equations. We consider a thin, continuous, high-
intensity ion beam �j � b�, with characteristic radius
rb propagating in the z direction through background
electron and ion components �j � e, i�, each of which is
described by a distribution function fj�x, p, t� [10–12].
The charge components �j � b, e, i� propagate in the z
© 2000 The American Physical Society 084401-1
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direction with characteristic axial momentum gjmjbjc,
where Vj � bjc is the average directed axial velocity,
gj � �1 2 b

2
j �21�2 is the relativistic mass factor, ej and

mj are the charge and rest mass, respectively, of a jth
species particle, and c is the speed of light in vacuo.
While the nonlinear df formalism outlined here is readily
adapted to the case of a periodic applied focusing field,
for present purposes we make use of a smooth-focusing
model in which the applied focusing force is described by

Ffoc
j � 2gjmjv

2
bjx� , (1)

where x� � xêx 1 yêy is the transverse displacement
from the beam axis, and vbj � const is the effective
084401-2
applied betatron frequency for transverse oscillations.
Furthermore, in a frame of reference moving with axial
velocity bjc, the motion of a jth species particle is
assumed to be nonrelativistic. The space-charge intensity
is allowed to be arbitrarily large, subject only to transverse
confinement of the beam ions by the applied focusing
force, and the background electrons are confined in the
transverse plane by the space-charge potential f�x, t�
produced by the excess ion charge. In the electrostatic
and magnetostatic approximation, we represent the self-
electric and self-magnetic fields as Es � 2=f�x, t�
and Bs � = 3 �Az�x, t�êz�. The nonlinear Vlasov-
Maxwell equations in the six-dimensional phase space
�x, p� can be approximated by [10–12]
Ω

≠

≠t
1 y

≠

≠x
2

∑
gjmjv

2
bjx� 1 ej

µ
=f 2

yz

c
=�Az

∂
≠

≠p

∏æ
fj�x, p, t� � 0 , (2)
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=2f � 24p
X
j

ej

Z
d3 pfj�x, p, t� ,

=2Az � 2
4p

c

X
j

ej

Z
d3 pyzfj�x, p, t� .

(3)

In the nonlinear df formalism, we divide the total dis-
tribution function into two parts, fj � fj0 1 dfj, where
fj0 is a known solution to the nonlinear Vlasov-Maxwell
equations [(2) and (3)], and the numerical simulation is
carried out to determine only the detailed nonlinear evo-
lution of the perturbed distribution function dfj. This is
accomplished by advancing the weight function defined
by wj � dfj�fj, together with the particles’ positions
and momenta. The equations of motion for the particles,
obtained from the characteristics of the nonlinear Vlasov
equation (2), are given by

dxji

dt
� �gjmj�21pji ,

dpji

dt
� 2gjmjv2

bjx�ji 2 ej

µ
=f 2

yzji

c
=�Az

∂
.

(4)

Here the subscript “ji” labels the ith simulation particle
of the jth species. The weight functions wj , as functions
of phase space variables, are carried by the simulation
particles, and the dynamical equations for wj are easily
derived from the definition of wj and the nonlinear Vlasov
equation (2). Following the algebra in Refs. [23,24] , we
obtain

dwji

dt
� 2�1 2 wji�

1
fj0

≠fj0

≠p
d

µ
dpji

dt

∂
,

d

µ
dpji

dt

∂
� 2ej

µ
=df 2

yzji

c
=�dAz

∂
,

(5)

where df � f 2 f0 and dAz � Az 2 Az0. Here, the
equilibrium solutions (f0, Az0, fj0 ) solve the steady-state
(≠�≠t � 0) Vlasov-Maxwell equations (2) and (3) with
≠�≠z � 0 and ≠�≠u � 0. A wide variety of axisymmetric
equilibrium solutions to Eqs. (2) and (3) have been inves-
tigated in the literature. The perturbed distribution dfj is
obtained through the weighted Klimontovich representa-
tion [1]

dfj �
Nj

Nsj

NsjX
i�1

wjid�x 2 xji�d�p 2 pji � , (6)

where Nj is the total number of actual jth species particles
and Nsj is the total number of simulation particles for the
jth species. Maxwell’s equations are also expressed in
terms of the perturbed fields and perturbed density accord-
ing to

=2df � 24p
X
j

ejdnj, =2dAz � 2
4p

c

X
j

djzj ,

(7)

where

dnj �
Z

d3 pdfj�x,p, t� �
Nj

Nsj

NsjX
i�1

wjiS�x 2 xji� ,

djzj � ej

Z
d3 pyzjdfj�x, p, t� (8)

�
ejNj

Nsj

NsjX
i�1

yzjiwjiS�x 2 xji� .

Here, S�x 2 xji� represents the method of distributing par-
ticles on the grids in configuration space.

The nonlinear particle simulations are carried out by
iteratively advancing the particle motions, including the
weights they carry, according to Eqs. (4) and (5), and
updating the fields by solving the perturbed Maxwell’s
equations (7) with appropriate boundary conditions at
the cylindrical, perfectly conducting wall. Even though
it is a perturbative approach, the df method is fully
nonlinear and simulates completely the original nonlinear
084401-2
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Vlasov-Maxwell equations. Compared with conventional
particle-in-cell (PIC) simulations, the noise level in
df simulations is significantly reduced. The dominant
numerical noise mechanisms in particle simulations, such
as numerical collisions, are statistical. The df method
reduces the noise level of the simulations because the
statistical noise, which is of order O�N21�2

s � for the total
distribution function in the conventional PIC method, is
associated only with the perturbed distribution function in
the df method. If the same number of simulation particles
is used in the two approaches, then the noise level in the
df method is reduced by a factor of f�df relative to
the PIC method. To achieve the same accuracy for the
perturbed fields, the number of simulation particles used
in the df method is reduced by a factor of �f�df�2. For
the electron-proton two-stream instability in the Proton
Storage Ring experiment studied in this paper, we obtain
satisfactory results with about 105 simulation particles
using the df method. If the conventional PIC method
is used, for a nonlinear saturation level of 1%, about
104 times more simulation particles would be needed to
achieve the same accuracy. In addition, the df method can
be used to study linear stability properties, provided the
factor �1 2 wji� in Eq. (5) is approximated by unity and
the forcing term in Eq. (4) is replaced by the unperturbed
force, which is equivalent to integrating along unperturbed
particle orbits for the linearized system.

Implementation of the 3D multispecies nonlinear df
simulation method described above is embodied in the
BEST code [25] developed at the Princeton Plasma Physics
Laboratory. The code advances the particle motions us-
ing a leapfrog method and solves Maxwell’s equations
in cylindrical geometry. For those fast particle motions
which require much larger sampling frequency 1�Dt than
084401-3
the frequency of the mode being studied, the code uses an
adiabatic field pusher to advance the particles many time
steps without solving for the perturbed fields. The upper
limit for Dt, the time step to advance the particle’s phase
space position, is normally determined by the Courant con-
dition. For the electron-proton two-stream instability, the
electron’s transverse motion requires the smallest Dt, and
the mode frequency is comparable to the electron bounce
frequency in the transverse direction. If the number of
grids in the radial direction is 100, then the frequency for
advancing the electron motion should be 100 times larger
than the mode frequency. We can therefore update the elec-
trons’ phase space positions more often than the field. As
in many particle simulation schemes, an implicit scheme
was not chosen to be used due to the memory and CPU
time considerations for large-scale simulations.

The code has achieved an average speed of 40 ms�
�particle 3 step� on a DEC alpha personal workstation
500au computer and has been parallelized using both the
OpenMP and MPI parallel schemes. Written in Fortran 90/
95, the code extensively utilizes the object-oriented fea-
tures provided by the computer language. The NetCDF
scientific data format is implemented for large-scale diag-
nostics and visualization.

III. SIMULATION RESULTS

We first present application of the code to a single-
species thermal equilibrium ion beam in a constant focus-
ing field. It is assumed that the beam is centered inside
a cylindrical chamber with perfectly conducting wall lo-
cated at r � rw, and the equilibrium is one-dimensional,
depending only on the radial coordinate r � �x2 1 y2�1�2.
The isotropic thermal equilibrium distribution function in
the phase space �r, p� is given by
fb0�r, p� �
n̂b

�2pgbmbTb�3�2
exp

Ω
2

p2
��2gbmb 1 gbmbv

2
bbr2�2 1 eb�f0 2 bbAz0�
Tb

æ
exp

Ω
2

�pz 2 gbmbbbc�2

2gbmbTb

æ
,

(9)
where n̂b is the number density of beam particles at r � 0
and Tb � const is the temperature of the beam ions in
energy units. The equilibrium self-field potentials f0
and Az0 can be determined numerically from the nonlinear
Maxwell’s equations in Eq. (3). As an example, we
examine the nonlinear propagation properties of a heavy
ion beam with gb � 1.08, mass number A � 133, and
normalized space-charge intensity v̂

2
pb�2g

2
bv

2
bb � 0.95.

Here, v̂
2
pb � 4pn̂2

be2
b�gbmb is the relativistic plasma

frequency squared on axis �r � 0�. A random three-
dimensional initial perturbation is introduced into the
system, and the beam is propagated from t � 0 to
t � 1200tb , where tb � v

21
bb . The simulation results

show that the perturbations do not grow and the beam
propagates quiescently over large distance, which agrees
with the nonlinear stability theorem [9] for the choice of
monotonically decreasing equilibrium distribution func-
tion in Eq. (9). Shown in Fig. 1 is a plot of the density
perturbation at one spatial location versus normalized time
vbbt, for perturbations about the thermal equilibrium
distribution in Eq. (9). The amplitudes of the initial
random perturbation in weights in Fig. 1 are of order
1025, which leads to a very small density perturbation.
It is evident from Fig. 1 that the perturbations remain
extremely small, and the beam propagates quiescently
over very large distances, as expected.

As a second example, we study the linear surface mode
for perturbations about a thermal equilibrium ion beam in
the space-charge-dominated regime, with flattop density
profile. These modes are of practical interest because
084401-3
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FIG. 1. Time history of dnb�n̂b for small-amplitude perturba-
tions about a thermal equilibrium ion beam.

they can be destabilized by a two-stream electron-ion
interaction when background electrons are present
[12–18]. The BEST code, operating in its linear stability
mode, has recovered very well-defined eigenmodes with
mode structures and eigenfrequencies which agree well
with theoretical predications [1,12]. For the dipole mode
with azimuthal mode number l � 1, the dispersion
relation for these modes is given by [12]

v � kzVb 6
v̂pb
p

2 gb

vuut1 2
r2

b

r2
w

, (10)

where rb is the radius of the beam edge and rw is the
location of the conducting wall. In Eq. (10), v̂

2
pb �

4p n̂be2
b�gbmb is the ion plasma frequency-squared and

v̂pb�
p

2 gb � vbb has been assumed in the space-
charge-dominated limit. Shown in Fig. 2(a) is a compari-
son between plots of the eigenfrequency versus rw�rb

obtained from the simulations (diamonds and triangles)
and that predicted by Eq. (10) (solid curves). The system
parameters for this simulation are chosen close to the
space-charge limit, and the perturbation has normalized
axial wave number kzVb�vbb � 2p. It is clear from
Fig. 2 that the simulation results agree very well with
theoretical predictions.

In a high-intensity ion beam, the surface mode described
above can be destabilized by the presence of a background
electron population [12–18]. This instability is basically
of the two-stream type and is strongest when the ions are
relatively cold in the propagation direction. The directed
velocity difference, Vb 2 Ve, between the beam ions and
the background electrons provides the free energy for the
collective modes to grow. The instability observed in
the Proton Storage Ring [17,18] is believed to have this
two-stream characteristic. For the case of a flattop den-
sity profile for both ions and electrons, assuming Ve � 0,
vbe � 0, and negligible spread in axial momentum, we
obtain the analytical dispersion relation for dipole pertur-
bations with azimuthal mode number l � 1 [12],

��v 2 kzVb�2 2 v2
b� �v2 2 v2

e �

�

µ
1 2

r2
b

r2
w

∂
fgbmb

4Zbme
v̂4

pb , (11)
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(a)

(b)

FIG. 2. Excitation of the l � 1 surface mode in a uniform-
density ion beam, including (a) a plot of the normalized os-
cillation frequency v�vbb versus rw�rb and (b) a plot of the
frequency spectrum for rw�rb � 2.2.

where f � n̂e�n̂b is the fractional charge neutralization
and v2

e and v
2
b are defined by

v2
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1
2
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Zbme
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,

v2
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v̂2
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f 2

1

g
2
b

r2
b

r2
w

∂
.

(12)

Equation (11) supports an unstable eigenmode with eigen-
frequency v closely tuned to the electron collective oscil-
lation frequency v � ve and axial wave number kzVb �
ve 1 vb . For a near-Gaussian density profile, there is no
known analytical description of the eigenmode. However,
the simulation results indicate that the basic characteristics
of the unstable mode are qualitatively similar to the case
of a flattop density profile. For example, the most unstable
mode is a l � 1 dipole mode and is localized in the region
where the ion beam density gradient is largest.

We present here simulation results for the electron-
proton two-stream instability with moderate space-charge
084401-4
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intensity corresponding to v̂
2
pb�2g

2
bv

2
bb � 0.074, gb �

1.85, and me�mb � 1�1836. The equilibrium distribution
functions fj0 are chosen to be thermal equilibrium distribu-
tions for both species with Tb��gbmbV 2

b � 3.61 3 1026,
Te��gbmbV 2

b � 5.86 3 1027, and f � n̂e�n̂b � 0.1,
Ve � 0, and vbe � 0 (stationary electrons). These
system parameters correspond to the typical operating
parameters in the PSR experiment [17,18]. To achieve a
good theoretical understanding of the electron-proton two-
stream instability, it is necessary to use a fully 3D, kinetic,
low-noise simulation method. This is because, first of all,
the instability has a 3D mode structure which depends on
(x, y,z). In the r direction, the mode peaks at the location
with maximum equilibrium density gradient. In the u

(a)

(b)

FIG. 3. The x-y projection (at fixed value of z) of the per-
turbed electrostatic potential df�x, y, t� for the electron-proton
two-stream instability growing from a small initial perturbation,
shown at (a) t � 0 and (b) vbbt � 200.
084401-5
direction, the mode has an l � 1 dipole structure. The
mode structure varies in the z direction as well, because
the resonance condition of the mode corresponds to a
certain wavelength band in the z direction. Full kinetic
effects should be included in the study because they domi-
nate the stabilization process and the nonlinear saturation
of the instability—questions of significant importance for
experiments and therefore for theoretical studies. Because
of the large mass ratio between the ions and the electrons,
and the fact that the growth rate of the instability is much
smaller than the real frequency of the eigenmode, it takes a
relatively long time to simulate the instability. A low-noise
method, such as the df method used here, is therefore
highly desirable. In the simulations of the e-p instability,
we take the background distribution functions fj0�r, p�
to be the bi-Maxwellian generalization of Eq. (9), with
temperature Tj� � const in the x-y plane and temperature
Tjk � const in the z direction. Because the e-p instability
is strongest when the beam ions are cold in the parallel
direction [12] (no Landau damping by parallel kinetic
effects), we take Tbk � 0 and Tek � 0 in the simulations
presented in Figs. 3–7. The stabilizing influence of
longitudinal Landau damping by parallel ion kinetic

(b)

⊥⊥

FIG. 4. Plots of the linear growth rate g � Imv, including
(a) g�vbb versus kzVb�vbb and (b) g�vbb versus Te��Tb� .

(a)
084401-5



PRST-AB 3 HONG QIN, RONALD C. DAVIDSON, AND W. WEI-LI LEE 084401 (2000)
effects at increasing values of Tbk�Tb� is illustrated in
Fig. 8.

Illustrated in Fig. 3 is a typical unstable case, where the
x-y projection (at fixed value of z) of the perturbed space-
charge potential df�x,y, t� grows exponentially with time
during the linear phase of the instability. Clearly, the un-
stable mode is a dipole mode with azimuthal mode number
l � 1 [12]. It is important to emphasize that the simula-
tions are based on first principles— the nonlinear Vlasov-
Maxwell equations. All possible mode excitations are
allowed in the simulations. Simulations using typical op-
erating parameters in the PSR experiment [17,18] indicate
that the l � 1 dipole mode is the most unstable mode. For
this dominant mode in Fig. 3, the real part of the eigen-
frequency is Rev � 25.13vbb, and the normalized wave-
length in the longitudinal direction is kzVb �vbb � 26.17.
These results are in good agreement with those measured
in the PSR experiments [17,18].

Plots of the instability growth rate g � Imv versus
Te��Tb� and kzVb �vbb, with other parameters kept con-
stant, are shown in Fig. 4. The kzVb�vbb dependence
of the growth rate is qualitatively consistent with the an-
alytical results obtained for uniform-density beams [12].
The important physics here is that only for a certain range
of kzVb�vbb can the collective mode of the beam ions
effectively resonate with the electrons and produce insta-
bility. From Fig. 4(b), the value of Te��Tb� obviously

(b)

FIG. 5. Plots of (a) equilibrium proton and electron density
profiles and (b) perturbation time history for cold electrons with
Te��Tb� � 0.018.
084401-6
has an important effect on the growth rate. In order
to maximize their energy exchange with the beam ions,
the electrons must spatially overlap the region where the
eigenmode of the beam ions is localized (approximately
the region with the largest transverse gradient in ion den-
sity), which requires sufficiently large Te��Tb�. The elec-
trons are radially confined by the space-charge potential
of the beam ions, and the perpendicular electron tempera-
ture determines the radial extent of the electron density
profile. The growth rate is therefore strongly dependent
on Te��Tb�.

Shown in Figs. 5 and 6 is a comparison between two
cases with identical parameters except for the values of
Te��Tb�. When Te��Tb� � 0.018 (Fig. 5), the electrons
are relatively cold and localized at the beam center and
no instability develops over 370v

21
bb . When Te��Tb� �

0.130 (Fig. 6), however, the electrons are sufficiently hot
that the electron density profile overlaps that of the beam
ions and the onset of a strong e-p instability is observed.

Finally, for Te��Tb� � 0.130, the simulation results
for the linear and nonlinear phases of the instability are
shown in Fig. 7. Figure 7(a) shows the density perturba-
tion amplitude dnb at one spatial location plotted versus
vbbt, and Fig. 7(b) shows the corresponding logarithmic
plot. From Fig. 7(b), we see clearly the initial linear
growth phase and the nonlinear saturation of the insta-
bility. For the parameters considered here, the instability

(b)

FIG. 6. Plots of (a) equilibrium proton and electron density
profiles and (b) perturbation time history for warm electrons
with Te��Tb� � 0.130.
084401-6
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(a)

(b)

FIG. 7. Linear and nonlinear phases of the electron-proton
instability.

nonlinearly saturates at t � 400v
21
bb at a normalized am-

plitude of dnb�n̂b � 0.3%.
In the simulation results for the e-p instability presented

above, we have assumed cold beam ions in the longitudinal
direction (Tbk � 0) to maximize the growth rate of the in-
stability. In general, when the longitudinal temperature of
the beam ions is finite, Landau damping by parallel ion ki-
netic effects provides a mechanism that reduces the growth
rate. The decrease in the linear growth rate due to Lan-
dau damping of the unstable modes can be estimated to be

FIG. 8. The maximum linear growth rate �Imv�max of the
electron-proton instability decreases as the longitudinal tempera-
ture of the beam ions increases.
084401-7
of order kzyTbk, where yTbk � �2Tbk�gbmb�1�2. Shown
in Fig. 8 is a plot of the maximum linear growth rate
�Imv�max versus Tbk�Tb� and kzyTbk obtained in numeri-
cal simulations of the e-p instability using the BEST code.
As is evident from the figure, the growth rate decreases
dramatically as Tbk�Tb� and kzyTbk increase. When Tbk

is high enough that kzyTbk is comparable to the linear
growth rate for the Tbk � 0 case, the mode is stabilized by
longitudinal Landau damping by the beam ions. Because
the phase velocity of the mode in the longitudinal direc-
tion is far removed from the electron velocity distribution
jv�kz j ¿ Ve 1 yTek, we do not expect the longitudinal
electron temperature to affect significantly the growth rate
of the instability.

IV. CONCLUSIONS

In conclusion, a 3D multispecies nonlinear perturba-
tive particle simulation method has been developed to
study collective processes in intense charged particle
beams described self-consistently by the Vlasov-Maxwell
equations. The simulation results show that an isotropic
thermal equilibrium ion beam in a constant focusing field
is nonlinearly stable and can propagate quiescently over
hundreds of lattice periods. For the surface eigenmodes
excited in a uniform-density beam, the simulation results
agree well with analytical results [12]. Introducing a
background component of electrons, a strong electron-
proton two-stream instability is observed in the simula-
tions when Tbk is sufficiently small. Several properties
of this instability have been investigated numerically and
are found to be in qualitative agreement with theoretical
predictions [12]. Simulation results for the typical operat-
ing parameters in the PSR experiment [17,18] are in good
agreement with the experimental results in terms of the
dipole mode structure, wavelength, and eigenfrequency.
Most importantly, in the simulations, a small spread in
axial momentum of the beam particles is found to be
effective in stabilizing the two-stream instability. The
newly developed BEST code has been tested and applied
in different parameter regimes. As a 3D multispecies
perturbative particle simulation code, it provides several
unique capabilities. Since the simulation particles are
used to simulate only the perturbed distribution functions
and the perturbed self-fields, the simulation noise is
reduced significantly. The perturbative approach also
enables the code to investigate different physics effects
separately as well as simultaneously. The code can be
easily switched between linear and nonlinear operation
and used to study both linear stability properties and
nonlinear beam dynamics. These features, combined with
3D and multispecies capabilities, provide an effective
tool to investigate the electron-ion two-stream instability,
periodically focused solutions in alternating gradient field
configurations, halo formation, and many other important
problems in nonlinear beam dynamics and accelerator
084401-7
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physics. Finally, the BEST code is readily adapted to the
case where the applied focusing force Ffoc

j corresponds
to a periodic focusing quadrupole field or solenoidal
field. Results of these studies will be reported in future
publications.
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