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Abstract

Collective processes in intense charged particle beams described self-consistently by the Vlasov–Maxwell equations are
studied using a 3D multispecies nonlinear perturbative particle simulation method. The newly-developed Beam Equilibrium

Ž .Stability and Transport BEST code has been used to simulate the nonlinear stability properties of intense beam
Ž .propagation, surface eigenmodes in a high-intensity beam, and the electron–proton e–p two-stream instability observed in

Ž .the Proton Storage Ring PSR . q 2000 Elsevier Science B.V. All rights reserved.

For high-intensity accelerator applications ranging
from spallation neutron sources to heavy ion fusion,
space-charge effects on beam equilibrium, stability
and transport properties become increasingly impor-
tant. To understand these collective processes at high
beam intensities, it is necessary to treat the beam
dynamics self-consistently using the nonlinear

w xVlasov–Maxwell equations 1,2 . Recently, the d f
formalism, a low-noise, nonlinear perturbative parti-
cle simulation technique, has been developed for
intense beam applications, and applied to matched-

w xbeam propagation in a periodic focusing field 3,4
and other related studies. The present Letter reports
recent advances in applying the d f formalism to
investigate nonlinear collective processes in intense
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w xcharged particle beams. The BEST code 5 de-
scribed here is a newly-developed 3D multispecies
nonlinear perturbative particle simulation code, which
can be applied to a wide range of important collec-
tive processes in intense beams, such as the electron-
ion two-stream interaction in proton storage rings
w x w x6–8 and electron storage rings 9–11 , and periodi-

w xcally-focused beam propagation 12,13 .
The theoretical model employed here is based on

the nonlinear Vlasov–Maxwell equations. We con-
sider a thin, continuous, high-intensity ion beam
Ž .jsb , with characteristic radius r propagating inb

the z-direction through background electron and ion
Ž .components jse,i , each of which is described by

Ž . w xa distribution function f x, p,t 6,14,15 . Thej

charge components propagate in the z-direction with
characteristic axial momentum g m b c, where V sj j j j

b c is the average directed axial velocity, and g sj j
Ž 2 .y1r21yb is the relativistic mass factor of a jthj

species particle. While the nonlinear d f formalism
outlined here is readily adapted to the case of a
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periodic applied focusing field, for present purpose
we make use of a smooth-focusing model in which
the applied focusing force is described by

F foc syg m v 2 x , 1Ž .j j j b j H

where x sxe qye is the transverse displacementˆ ˆH x y

from the beam axis, and v sconst. is the effectiveb j

applied betatron frequency for transverse oscilla-
tions. Furthermore, in a frame of reference moving
with axial velocity b c, the motion of a jth speciesj

particle is assumed to be nonrelativistic. The space-
charge intensity is allowed to be arbitrarily large,
subject only to transverse confinement of the beam
ions by the applied focusing force, and the back-
ground electrons are confined in the transverse plane

Ž .by the space-charge potential f x,t produced by
the excess ion charge. In the electrostatic and magne-
tostatic approximation, we represent the self-electric

s Ž . sand self-magnetic fields as E sy=f x,t and B
Ž .s==A x,t e . The nonlinear Vlasov–Maxwellˆz z

Ž .equations in the six-dimensional phase space x, p
w xcan be approximated by 6,14

E E
2qzP y g m v xj j b j H½ E t E x

Õ Ez
qe =fy = A P f x , p ,t s0,Ž .j H z jž / 5c E p

2Ž .

and

= 2fsy4p e d3pf x , p ,t ,Ž .Ý Hj j
j

4p
2 3= A sy e d pÕ f x , p ,t . 3Ž . Ž .Ý Hz j z jc j

w xIn the nonlinear d f formalism 16,17 , we divide
the total distribution function into two parts, f s fj j0

qd f , where f is a known solution to the nonlin-j j0
Ž . Ž .ear Vlasov–Maxwell Eqs. 2 and 3 , and the nu-

merical simulation is carried out to determine only
the detailed nonlinear evolution of the perturbed
distribution function d f . This is accomplished byj

advancing the weight function defined by w 'j

d f rf , together with the particles’ positions andj j

momenta. The equations of motion for the particles,

obtained from the characteristics of the nonlinear
Ž .Vlasov Eq. 2 , are given by

dx ji y1s g m p ,Ž .j j jidt

dp Õji z ji2syg m v x ye =fy = A .j j b j H ji j H zž /dt c
4Ž .

Here the subscript ‘ ji’ labels the ith simulation
particle of the jth species. The weight functions w ,j
as functions of phase space variables, are carried by
the simulation particles, and the dynamical equations
for w are easily derived from the definition of wj j

Ž .and the nonlinear Vlasov Eq. 2 . Following some
w xalgebra, we obtain 3–5,16,17

dw 1 E f dpji j0 ji
sy 1yw Pd ,Ž .ji ž /dt f E p dtj0

dp Õji z ji
d 'ye =dfy = d A , 5Ž .j H zž /ž /dt c

where dfsfyf and d A sA yA . Here, the0 z z z 0
Ž .equilibrium solutions f , A , f solve the0 z 0 j0

Ž . Ž .steady-state ErE ts0 Vlasov–Maxwell Eqs. 2
Ž .and 3 with ErE zs0 and ErEus0. A wide variety

Ž .of axisymmetric equilibrium solutions to Eqs. 2
Ž .and 3 have been investigated in the literature. The

perturbed distribution d f is obtained through thej
w xweighted Klimontovich representation 1

NsjNj
d f s w d xyx d pyp , 6Ž . Ž . Ž .Ýj ji ji jiNs j is1

where N is the total number of actual jth speciesj

particles, and N is the total number of simulations j

particles for the jth species. Maxwell’s equations are
also expressed in terms of the perturbed fields and
perturbed density according to

= 2dfsy4p e d n ,Ý j j
j

4p
2= d A sy d j , 7Ž .Ýz z jc j
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where

d n s d3pd f x , p ,tŽ .Hj j

NsjNj
s w S xyx ,Ž .Ý ji jiNs j is1

d j se d3pÕ d f x , p ,tŽ .Hz j j z j j

Nsje Nj j
s Õ w S xyx . 8Ž . Ž .Ý z ji ji jiNs j is1

Ž .Here, S xyx is a shape function distributingji

particles on the grids in configuration space.
The nonlinear particle simulations are carried out

by iteratively advancing the particle motions, includ-
Ž .ing the weights they carry, according to Eqs. 4 and

Ž .5 , and updating the fields by solving the perturbed
Ž .Maxwell’s Eqs. 7 with appropriate boundary condi-

tions at the cylindrical, perfectly conducting wall.
Even though it is a perturbative approach, the d f
method is fully nonlinear and simulates completely
the original nonlinear Vlasov–Maxwell equations.
Compared with conventional particle-in-cell simula-
tions, the noise level in d f simulations is signifi-
cantly reduced. The d f method can also be used to
study linear stability properties, provided the factor
Ž . Ž .1yw in Eq. 5 is approximated by unity, and theji

Ž .forcing term in Eq. 4 is replaced by the unper-
turbed force.

Implementation of the 3D multispecies nonlinear
d f simulation method described above is embodied

w xin the BEST code 16,17 . The code advances the
particle motions using a leap-frog method, and solves
Maxwell’s equations in cylindrical geometry. For
those fast particle motions which require much larger
sampling frequency than the frequency of the mode
being studied, the code uses an adiabatic field pusher
to advance the particles many time steps without
solving for the perturbed fields.

We first present application of the code to a
Ž .single-species thermal equilibrium ion beam jsb

in a constant focusing field. It is assumed that the
beam is centered inside a cylindrical pipe with per-
fectly conducting wall located at rsr , and thatw

equilibrium properties depend only on the radial

Ž 2 2 .1r2coordinate rs x qy . The isotropic thermal
equilibrium distribution function in the phase space
Ž . w xr, p is given by 1,14

n̂b
Ž .f r , p sb0 3r22pg m TŽ .b b b

p2 r2g m q g m v 2 r 2r2 q e f y b AŽ .H b b b b b b b 0 b z 0
=exp y½ 5Tb

2p y g m b cŽ .z b b b
=exp y , 9Ž .½ 52g m Tb b b

where n is the number density of beam particles atˆb

rs0, and T sconst. is the temperature of the beamb

ions in energy units. The equilibrium self-field po-
tentials f and A can be determined numerically0 z 0

Ž .from the nonlinear Maxwell’s equations in Eq. 3 .
As an example, we examine the nonlinear propaga-
tion properties of a heavy ion beam with g s1.08,b

mass number As133, and normalized space-charge
intensity v 2 r2g 2 v 2 s 0.95. Here, v 2 sˆ ˆpb b b b pb

4p n2 e2rg m is the relativistic plasma frequency-ˆb b b b
Ž .squared on axis rs0 . A random initial perturba-

tion is introduced into the system, and the beam is
propagated from ts0 to ts1200t , where t 'b b

vy1. The simulation results show that the perturba-b b

tions do not grow and the beam propagates quies-
cently over large distance, which agrees with the

w xnonlinear stability theorem 18 for the choice of
monotonically-decreasing equilibrium distribution

Ž .function in Eq. 9 .
As a second example, we study the linear surface

mode for perturbations about a thermal equilibrium
ion beam in the space-charge-dominated regime, with
flat-top density profile. These modes are of practical
interest because they can be destabilized by a two-
stream electron-ion interaction when background

w xelectrons are present 6–8 . The BEST code, operat-
ing in its linear stability mode, has recovered very
well-defined eigenmodes with mode structures and
eigenfrequencies which agree well with theoretical

w xpredications 6 . For the dipole mode with azimuthal
mode number ls1, the dispersion relation is given

w xby 6

2v rˆ pb b
vsk V " 1y , 10Ž .)z b 2' r2 g wb
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where r is the radius of the beam edge, and r isb w
Ž . 2location of the conducting wall. In Eq. 10 , v sˆ pb

4p n e2rg m is the ion plasma frequency-squared,ˆb b b b'and v r 2 g "v has been assumed in theˆ pb b b b

space-charge-dominated limit. The dependence of
the eigenfrequency on r rr obtained from the sim-w b

ulations agree very well with the theoretical predic-
Ž . w xtions of Eq. 10 17 .

In a high-intensity ion beam, the surface mode
described above can be destabilized by the presence

w xof a background electron population 6–8 . This
instability is basically of the two-stream type, and is
strongest when the ions are relatively cold in the
propagation direction. The directed velocity differ-
ence, V yV , between the beam ions and the back-b e

ground electrons provides the free energy for the
collective modes to grow. The instability observed in

w xthe Proton Storage Ring 7,8 is believed to have this
two-stream characteristic.

We present here simulation results for the elec-
tron–proton two-stream instability with moderate
space-charge intensity corresponding to v 2 rˆ pb

2g 2v 2 s0.074, g s1.85, and m rm s1r1836.b b b b e b

The equilibrium distribution functions f are chosenj0

to be thermal equilibrium distributions for both
species with T rg m V 2 s 3.61 = 10y 6 ,b H b b b

T rg m V 2 s5.86=10y7, and f'n rn s0.1,ˆ ˆeH b b b e b
Ž .V s0, and v s0 stationary electrons . Thesee b e

Ž .Fig. 1. The x-y projection at fixed value of z of the perturbed
Ž .electrostatic potential df x, y,t at v ts200 for the perturba-b b

tions growing from a small initial level.

Fig. 2. Plots of the linear growth rate g s Im v versus k V rv .z b b b

system parameters correspond to the typical operat-
w xing parameters in the PSR experiment 7,8 . In the

simulations of the e–p instability, we take the back-
Ž .ground distribution functions f r, p to be the bi-j0
Ž .Maxwellian generalization of Eq. 9 , with tempera-

ture T sconst. in the x–y plane, and temperaturejH
T sconst. in the z-direction. Because the e–p in-jI
stability is strongest when the beam ions are cold in

w x Žthe parallel direction 6 no Landau damping by
.parallel kinetic effects , we take T s0 and T s0bI eI

in the simulations presented in Figs. 1, 2 and 3. The
stabilizing influence of longitudinal Landau damping
by parallel ion kinetic effects at increasing values of
T rT is illustrated in Fig. 4. Shown in Fig. 1 isbI bH

Ža typical unstable case, where the x–y projection at
.fixed value of z of the perturbed space-charge

Ž .potential df x, y,t grows exponentially with time
during the linear phase of the instability. Clearly, the

Fig. 3. Linear and nonlinear phases of the electron–proton instabil-
ity.
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Ž .Fig. 4. The maximum linear growth rate Im v of the elec-max

tron–proton instability decreases as the longitudinal temperature
of the beam ions increases.

unstable mode is a dipole mode with azimuthal mode
w xnumber ls1 17 .

A plot of the instability growth rate gs Im v

versus k V rv , with other parameters kept con-z b b b

stant, is shown in Fig. 2. The k V rv dependencez b b b

of the growth rate is qualitatively consistent with the
analytical results obtained for uniform-density beams
w x6 . The important physics here is that only for a
certain range of k V rv can the collective modez b b b

of the beam ions effectively resonate with the elec-
trons and produce instability. Simulation results show
that the value of T rT has an important effecteH bH
on the growth rate. In order to maximize their energy
exchange with the beam ions, the electrons must
spatially overlap the region where the eigenmode of

Žthe beam ions is localized approximately the region
.with the largest transverse gradient in ion density ,

which requires sufficiently large T rT . TheeH bH
electrons are radially confined by the space-charge
potential of the beam ions, and the perpendicular
electron temperature determines the radial extent of
the electron density profile. The growth rate is there-

w xfore strongly dependent on T rT 17 . For theeH bH
system parameters listed above, the growth rate gs
0.031v when T rT s0.130, but becomes un-b b eH bH
detectable over 360 vy1 when T rT s0.018.b b eH bH

Finally, for T rT s0.130, the simulation re-eH bH
sults for the linear and nonlinear phases of the
instability are shown in Fig. 3, where the density

perturbation amplitude d n at one spatial location isb

plotted versus v t. We see clearly the initial linearb b

grow phase and the nonlinear saturation of the insta-
bility. For the parameters considered here, the insta-
bility nonlinearly saturates at t;400vy1 at a nor-b b

malized amplitude of d n rn ;0.3%.ˆb b

In the simulation results for the e–p instability
presented above, we have assumed cold beam ions in

Ž .the longitudinal direction T s0 to maximize thebI
growth rate of the instability. In general, when the
longitudinal temperature of the beam ions is finite,
Landau damping by parallel ion kinetic effects pro-

w xvides a mechanism that reduces the growth rate 17 .
The decrease in the linear growth rate due to Landau
damping of the unstable modes can be estimated to

Ž .1r2be of order k Õ , where Õ s 2T rg m .z T bI T bI bI b b

Shown in Fig. 4 is a plot of the maximum linear
Ž .growth rate Im v versus T rT and k Õmax bI bH z T bI

obtained in numerical simulations of the e–p insta-
bility using the BEST code. As evident from the
figure, the growth rate decreases dramatically as
T rT and k Õ increase. When T is highbI bH z T bI bI
enough that k Õ is comparable to the linearz T bI
growth rate for the T s0 case, the mode is stabi-bI
lized by longitudinal Landau damping by the beam
ions. Because the phase velocity of the mode in the
longitudinal direction is far removed from the elec-
tron velocity distribution, Nvrk N4V qÕ , wez e T eI
do not expect the longitudinal electron temperature
to affect significantly the growth rate of the instabil-
ity.

In conclusion, a 3D multispecies nonlinear pertur-
bative particle simulation method has been devel-
oped to study collective processes in intense charged
particle beams described self-consistently by the
Vlasov–Maxwell equations. The simulation results
show that an isotropic thermal equilibrium ion beam
in a constant focusing field is nonlinearly stable and
can propagate quiescently over hundreds of lattice

w xperiods 18 . Introducing a background component of
Ž .electrons, a strong electron–proton e–p two-stream

instability is observed in the simulations when T isbI
sufficiently small. Several properties of this instabil-
ity have been investigated numerically, and are found
to be in qualitative agreement with theoretical pre-
dictions. Most importantly, the simulations show that
the two-stream instability can be stabilized by a
modest spread in axial momentum of the beam parti-
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cles. Further details will be presented in a related
w xpublication 17 .
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