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During the pedestal cycle of H-mode edge plasmas in tokaxérenents, large-amplitude pedestal build-up
and destruction coexist with small-amplitude drift wavebtudence. The pedestal dynamics simultaneously
includes fast time-scale electromagnetic instabilitiesg time-scale turbulence-induced transport processes,
and more interestingly the interaction between them. Toerigally simulate the pedestal dynamics from first
principles, it is desirable to develop an effective aldoritbased on the gyrokinetic theory. However, existing
gyrokinetic theories cannot treat fully nonlinear elentegnetic perturbations with multi-scale-length struc-
tures in spacetime, and therefore do not apply to edge pkastnset of generalized gyrokinetic equations valid
for the edge plasmas has been derived. This formalism allage-amplitude, time-dependent background
electromagnetic fields to be developed fully nonlinearldiition to small-amplitude, short-wavelength elec-
tromagnetic perturbations. It turns out that the most gargyrokinetic theory can be geometrically formu-
lated. The Poincaré-Cartan-Einstein 1-form on the 7D plspsce determines particles’ worldlines in the phase
space, and realizes the momentum integrals in kinetic yh@ofiber integrals. The infinitesimal generator of
the gyro-symmetry is then asymptotically constructed ashtase for the gyrophase coordinate of the gyro-
center coordinate system. This is accomplished by applihiegLie coordinate perturbation method to the
Poincaré-Cartan-Einstein 1-form. General gyrokinetlasév-Maxwell equations are then developed as the
Vlasov-Maxwell equations in the gyrocenter coordinateesys rather than a set of new equations. Because
the general gyrokinetic system developed is geometrithflysame as the Vlasov-Maxwell equations, all the
coordinate-independent properties of the Vlasov-Maxegllations, such as energy conservation, momentum
conservation, and phase space volume conservation, amaatitally carried over to the general gyrokinetic
system. The pullback transformation associated with tleedinate transformation is shown to be an indispens-
able part of the general gyrokinetic Vlasov-Maxwell eqoasi. As an example, the pullback transformation
in the gyrokinetic Poisson equation is explicitly expresseterms of moments of the gyrocenter distribution
function, with the important gyro-orbit squeezing effeaedo the large electric field shearing in the edge and
the full finite Larmour radius effect for short wavelengthciuations. The familiar “polarization drift density”

in the gyrocenter Poisson equation is replaced by a moraa@engression.
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1 Introduction

To a large extent, the dynamics of edge plasmas in tokama&siees the overall confinement properties of the
devices. It is necessary to develop a kinetic simulatiorhothat enables large-scale simulations of the edge
dynamics based on first principles. The kinetic equationesgghat is most analytically and algorithmically
suitable for this purpose is the gyrokinetic equation sysfg@—25]. The origin of gyrokinetic theory can be
traced back to the early work of extending the Chew-Gold&etgw theory [26] to higher orders by Frieman,
Davidson, and Langdon [1,2]. The introduction of guidirepter coordinates by Catto [6] and Littlejohn’s
theory of guiding center using the non-canonical coordirrturbation method [5, 9, 11] played important
role in the development of gyrokinetic theory. Lee [27] firstlized that the gyrokinetic Poisson equation is
nontrivially different from the regular Poisson equatioithe most important difference is the “polarization
drift density”. Soon, Dubiret al [12] applied Hamiltonian non-canonical perturbation nogetto the derivation
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of the gyrokinetic equation, followed by Hahm using the Laggian non-canonical perturbation method [13].
Subsequently, many aspects [14-22, 24, 25] of the modewokingtic theory, such as the concept of gyro-center
gauge [22], high frequency gyrokinetics [19, 22], and ggenter pull-back transformation [21, 24] have been
worked out. However, it is difficult to apply previously dezd gyrokinetic system to the edge plasmas due to
the unique features of their dynamics. In the pedestal dpclel-modes, there exists a long-term dynamics for
the pedestal build-up when the plasma is heated by neutat ligections. The exact dynamics of the pedestal
build-up is determined by the short time-scale, nonlinesalturated microturbulence. The continuous build-up
of pedestal eventually will drive edge localized mode (ELMistable [28, 29], which is also short time-scale.
The nonlinearly evolved ELM reduce the height of the peddstaa large portion and the pedestal starts to
grow again, which marks the beginning of another pedestecyin the present study, we develop a general
gyrokinetic system, where the long-term pedestal dynaimidgscribed by a time-dependent background, and
the microturbulence and ELMs are described by nonlineauggations on the dynamic background. Such a
split between dynamic background and perturbations is @swenient when studying the physics associated
with the electric field in the radial directioB,. in the edge. Because the pedestal widthis much smaller
than the minor radius, thE, developed is much bigger than that in the core region. Sime@édestal is time-
dependent, so i&,. It is therefore necessary to allow a large background étefigld E((¢) to nonlinearly
evolve in the gyrokinetic equation system. The backgrouagmetic fieldB(¢) is allowed to be time-dependent
as well, which will conveniently include the change of matimequilibrium during the pedestal cycle or the
ramp-up phase of the toroidal current. In previous gyraiirsystems, the nonlinear dynamics of the background
electromagnetic field was not treated.

Another important new feature of the present study is thaargetric method is adopted. In its most general
form, gyrokinetic theory is about a symmetry, called gyymsetry, for magnetized plasmas. Our objective
is to decouple the gyro-phase dynamics from the rest ofgdanriynamics by finding the gyro-symmetry. Ob-
viously, this is fundamentally different from the convemtal gyrokinetic concept of “averaging out” the “fast
gyro-motion”. This objective is accomplished by asymptalliy constructing a good coordinate system, which
is of course a nontrivial task. Indeed, it is almost impdssiithout using the Lie coordinate perturbation
method [11, 30-32] enabled by the geometric nature of thegbpace dynamics. We will develop the gyroki-
netic Vlasov-Maxwell equations as the Vlasov-Maxwell eiiprgs in the gyrocenter coordinates, rather than a
new set of equations. Compared with other methods of derigymokinetic equations, the advantage of the geo-
metric approach is that it automatically guarantees theigkydescribed by the gyrokinetic system is the exactly
the same as those contained in the Vlasov-Maxwell equaitiaihe laboratory coordinates when the gyrokinetic
system is valid, i.e., when the gyro-symmetry exists. Risyi@ geometry; it does not depend on which coor-
dinate system is used. Therefore all the coordinate-inu#gra properties of the Vlasov-Maxwell equations,
such as energy conservation, momentum conservation arsg gpace volume conservation, are automatically
satisfied by the gyrokinetic system. The essential compmfehe geometric gyrokinetic theory that guarantees
the invariance of physics content is the pullback transédiom of the distribution function associated with the
coordinate transformation. The importance of the pullbaksformation can’t be over-emphasized. Without
this vital element, many important physics will be lost i tipyrokinetic theory. As an example, the pullback
transformation in the gyrokinetic Poisson equation is il expressed in terms of moments of the gyrocenter
distribution function, with the important gyro-orbit sqeeng effect due to the large electric field shearing in the
edge and the full finite Larmour radius effect for short wawngjth fluctuations. Even though all the coordinate
systems are equivalent in describing the physics, the ctatipnal complexity for different coordinate systems
are different. In this sense, many physics theories andighigaos of computational physics are quests of good
coordinates. For the gyrokinetic theory and numerical &tian, the good coordinate system is the gyrocenter
coordinate system that explicitly displays the gyro-syrimnas its gyro-phase coordinate.

2 Gyro-symmetry and Lie coordinate perturbation method

The natural geometric object that determines a chargettlggstdynamics in an electromagnetic field is given
by the Poincaré-Cartan-Einstein 1-form

7A+p(A+v)~dx[§+¢}dt, Q)
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constructed by taking the only two geometric objects relédehe dynamics of charged particles, the momentum
1-formp = (—v?/2,p) and the potential 1-formd = (—¢, A), and then performing the simplest nontrivial
operation, i.e., addition with the right units, to let peleis interact with fields. Here, the bold mathematical
symbolsA andp represent theé = 1,2, 3 components of the 1-form4 andp, dx representdz’ (i = 1,2, 3),
and(A +v)-dx is just a shorthand notation for,,_, , 5(A; +v;)dz". We have normalized by m, A by mc/e,
and¢ by m/e. These normalizations will be used thereafter, unlessexdicitly stated otherwise. Particles’
dynamics is determined by Hamilton’s equation

irdy =0, (2

wherer is a vector field, whose integrals are particles’ worldlineshe 7D phase spaée(including time). Here
d~ is the exterior derivative of andi.d~ is the inner product betweefy andr. Very elegantly, the Poincaré-
Cartan-Einstein 1-forny also gives the necessary “volume form” needed for the furestdah “velocity integrals”
in kinetic theory. However, this topic is beyond the mathgoahsophistication of the present paper. A complete
geometric setting for the gyrokinetic theory can be founBéf. [25].

A symmetry vector field) (infinitesimal generator) of is defined to be a vector field that satisfies

L,y =ds 3)

for some functiors on the phase spaceherelL,, is the Lie derivative along. Vector fieldn generates a 1-
parameter symmetry group for The symmetry fory that we are interested is an approximate one. It is an exact
symmetry when the electromagnetic fields are constant icetipae. To demonstrate the basic concept, we first
consider the case of constant magnetic field without etsdtfield. Because of its simplicity, there are several
symmetries admitted by. The gyro-symmetry is the symmetry given by

(1o 0N, (Lo o @
T=%\Boz " ow,) "\ Boy ov, )"
To find out the corresponding invariant, we need Noetheeotbm which links symmetries and invariants.
Here, we cast the theorem in the form of forms. For a symmedcyor fieldn, using Cartan’s formuld,,y =
d(iyy) + indy, we have
d(iny) + iydy =ds . (5)
For the vector field- of a worldline,
d(y-m)-r=ds-7, (6)

which implies thaty - n — s is an invariant. Applying Noether’s theorem, we can verifgttthe corresponding
invariant is the magnetic moment
Ui + vi

=5 (7)

as expected. The gyro-symmetrias a rather complicated expression in the Cartesian ez, y, v, vy).
It is desirable to construct a new coordinate such#hata coordinate base

9]

whered is the gyrophase coordinate. Eg.(4) indicates that the-gynometryn is neither a rotation in the
momentum space, nor a rotation in the configuration spacereftre,d is not a momentum coordinate or a
configuration coordinate. It is a phase-space coordinatedbpends on particles’ momentum as well as their
spacetime positions.

When the fields are not constant in spacetime, the gyro-syrgmeén Eq. (4) is broken. We therefore seek
an asymptotic symmetry when the spacetime inhomogeneitgak. First, we construct a non-canonical phase
space coordinate systeth= (X, @, w, §) such thaty can be expanded into an asymptotic series

Y=Y +7+Y+ ..., 9
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wherey; ~ %9, 72 ~ €1, ande < 1. By constructiony, admits the gyro-symmetry = 9/96, but 7,
does not necessarilyZ is the called the zeroth order gyrocenter coordinate. Thergordinate perturbation
transformatiory : Z — Z = g(Z) is introduced such that in the new coordinates- (X, u,w, ), y1 and/ory,
admit the gyro-symmetry = 9/96. In fact, we will seek a stronger symmetry condition

8v/90 =0,

which is sufficient forn = 9/06 to satisfy Eq. (3). Z is the called the first and/or second-order gyrocenter
coordinate. The small parametemeasures the weakness of spacetime inhomogeneity of tts.fiehe coor-
dinate perturbation transformation procedure indicates the most relaxed conditions for the existence of an
asymptotic gyro-symmetry is

E= ]EQ-F]El7 ]35]?)04—]317 (10)
B B
EO ~ Y Xc 0 ) El ~ &1 M Xc 0 ) Bl ~£] BO; (11)
VE() 1 8E0 VBO 1 aBO
<| B 0, ot ) ~ <| "B, By o ) T (12)
VEl 1 8E1 VB1 1 aBl
—— | ~1 1
(llE QB at) (llBl’QBl at) ’ (13)

where the fields were split into two par{¥,, B,) are the time-dependent background fields with long spaeetim
scale length compared with the spacetime gyroragdius (p,1/Q). The weak spacetime inhomogeneities of
the background fields are measured by the small paramgteor edge plasmas, the background electric field is
large. The order dE, implies that the potential drop of background field can begarable to the thermal energy
of the particlesj.e., eEq - p ~1. (E1,B;) are the perturbation parts with spacetime scale length acebje to
the spacetime gyroradius, and the perturbation amplitidesiasured by the small parameterBoth ey ande;
measure the weak spacetime inhomogeneities of the oveldB filn general, we assurae- ¢p ~ ¢;.

The coordinate perturbation method we adopt belongs tdalss of perturbation techniques generally referred
as the Lie perturbation method [11, 30-32]. A coordinatedfarmation for the 7D phase spagecan be
locally represented by a map between two subsets oftfhepaceg : = — Z = g(z). In the Lie coordinate
perturbation methody is a continuous group generated by a vector f@lavith g : z — Z = g(z,¢) and
G = dg/de|.=o. Under the coordinate transformatigry transforms as a function, i.e., it is pulled-back.

L(Z)=g ") =797 (2)] =v(2) — Laz)7(Z) + O(e?)
=7(2) —iqzdv(Z) —d[y-G(Z)] + O(%), (14)

where use has been made-off = dg—!/de|.—o. If v is an asymptotic series as in Eq. (9), #et= ¢1(z,¢) and
we have

I'(Z2)=Tu(2) +T1(2)+ O(?), (15)
Lo(Z) =v(Z), (16)
I'(Z2) =n(Z) —ig,(z)dv(Z) —d[y - Gi(Z)] . (17)

A similar procedure can be straightforwardly carried out®second order. Lef=g(g1(2,¢), ) ands ~ &2,

1
[i(2) = 2(2) ~ Lawan(2) + (58,0 - Lo ) 10(2). (19)

whereGy = dga/dd|s—o

3 Gyrocenter Coordinates

To construct the zeroth order gyrocenter coordidate (X, u, w, §), we first define two vector fields

_ Eo(y) x Bo(y) _ Bo(y)
D(y) = T Bl b(y) = Boly)
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wherey is a point in the spacetim&/. In addition, we define the following vector fields which atiepend on
v, the velocity at another spacetime positiog M,

u(y,ve.)b(y) = [v. —D(y)] - b(y) b(y) , (20)
w(y, vz)e(y, va) = [vo — D(y)] x b(y) x b(y) , (21)
C(y,VI) ' (y,vx) = 17 (22)
a(y,vz) = b(y) x C(y, Vz) : (23)

Velocity v, (y) has the following partition

v (y) = D(y) + u(y, va)b(y) + w(y, va)e(y, va) - (25)

The zeroth order gyrocenter coordinate transformation

go:z=(x,v,t) —~ Z = (X,u,w,0,t) (26)
is defined by
x=X+pX,v),a=uX,v), o =wX,v), sinf = —c(X)-e(X), t=t, (27)

wheree; (X) is an arbitrary unit vector field in the perpendicular direct and it can depend ohas well.
Consequently,

v = D(X) + ab(X) + we(X) . (28)
Substituting Egs. (27) and (28) into Eq. (1), and expandéngs using the ordering Egs. (10)-(13), we have
Y=% +%+ 0%, (29)

=2 72 D2
0 = (Ao + @b + D) - dx+2—0d9—(%+¢o) dt (30)

1= [ﬂva. (ub+7) + 2p VBy xp——VD a+A1(X+P)} -dX

ik _ _
+[ 233a VBy - b+ Al(X+p) }d9+{—A1(X+p)~a}dw

8D 1 we\ w Oa
{¢1(X+p)+p E*gp VEg - p7<ub+7) B—Oa] dt . (31)

Here, every field is evaluated Atand can depend anand exact terms of the forda for someo : P — R have
been discarded because their insignificance in Hamiltapisgon (2). It can be easily verified thag, /00 = 0,
but97, /00 # 0. As discussed before, we now introduce a coordinate petiorbi@ the zeroth order gyrocenter
coordinates?,

d91

Z=g1(Z,e), ~le=0=G1(Z), (32)

such thatdy; /06 = 0 in the first order gyrocenter coordinat&s= (X, u,w, ). Considering the fact that an
arbitrary exact term of the formio: can be added t9,, we have

11(2) =N(Z) —ig, (z)dv(Z) + dSi1(Z) , (33)
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which, withG; = 0, expands into

’yl(Z) = |:G1X x Bg — G1ub + VS + %Va <Ub+ 7) + p VBy X p
0

0 ow
08, _ u?
00 2B3

oS oS
_BEVD'a—‘_Al(X"'P)}-dX—i—[GD( b+—1]d +[ G19+—1+
0

1 w

—A (X : S — B
+Bo 1X+p) a}dw—i—[ BOle-‘r a-VBy-
051

+£A1(X+P)'C} df + {EO'GlirUGermeJrW¢1(X+P)

oD

1
—pP- 8t + p VEy - p+(ub+ 7)——:| dt . (34)

In Eq. (34), every field is evaluated dtand can depend an Extensive calculations are needed to solve(fer
and.S; from the requirement thdly; /96 = 0. We list the results without giving the details of the derioat

051 w?

Gix=——- 5 b+233aa VB + = B2 (Va b) x b — Bg(VD a)xb
+V51+121(X+p) < b (35)
0
Gro = 23”;51 VB, - ¢ +—b Va- be—Ob VD -a—b-[VS; + A1 (X +p)] , (36)
Grow = %%—%aVBob +c-Ai(X+p), (37)
Glg——%% —%a Ai(X+p). (38)
The determining equation fdf; is
o (2w o
32 Y (Va-b)xb— Bﬂg(VD-a)xb} 2;2VB0 :ca — “’—Ob Va-b
+—b VD - a+2330a VB - b+ﬂa88]t)+2/l QﬁQVana+ﬁa%—? (39)
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The G andS; in Egs. (35)-(39) remove thedependence iy, i.e.,

Y(Z) =v(Z) +n(2), (40)
2 2 2, 2
o= (Ag+ub+D)-dX + L go— (L2 g ) ar, (41)
2B, 2
w2
1(Z) = ——R - dX — Hydt , (42)
2B,
w2 ’LUQU
H1:E02—BSVB0+EbVXb+<’L/)1>
'LU2 w2
~ Y (V-E;—bb: - 43
4B§(V Eo —bb : VE) 2BORO’ (43)
dc
Ve aaRO ot a, ( )
E()J_xb
1/11E¢1(X+P)*TO'Al(XﬁLP)*UJC'Al(X*P)a (45)
1 27
<a>5% ; adfd , a=a—{(a) . (46)

The perturbation procedure can be carried out to the secaed by introducing another coordinate transfor-

mationg, : g1(Z) — Z = g o g1(Z). For simplicity, we only display the results updy(c?).

Yo = (o) dt, (47)
1 1
Y2 = 3Eo. [(G{ x Bl) X b} — 5 (ub+we). (G{ x Bl) +E .Gl (48)
a cw
Gl = G1X+FOG1W + FoGle ; (49)
oA
El =-V¢, — 8—151 —V () . (50)

The corresponding vector fieta, for g5 is

0%y, 1 1/

G'QX = _—au b + FOVSQ X b+_2B() (G1 X Bl) X b7 (51)

1

Gou=b-VSy+3b- (G{ x Bl) : (52)
CBydS, 1

GQw = ?W + §C . (Gl X Bl) s (53)
B dS: 1 (s

Go = == G+ 32 (Gl Bi) | &9

and the gauge functiosh, satisfies

0S,  0S, —
%JFBOW—?/)Q. (55)

852 <E0 x b

A particle’s trajectory (worldline) is given by a vector fiet on the phase spade which satisfies
irdy=0. (56)
The gyrocenter motion equation in its conventional form bambtained through

X 1 du_ 7 dw_ 71w d T (57)
dti’T—t,dti’T—t,dtiTt,dti’T—t.
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After some calculation, we obtain the following explicierssions up to orde? () andO(e?) for gyrocenter
dynamics,

X  Bf " b x Ef

P A LA e e -1 (58)
du Bf.Ef

— 59
dt Bf-b ’ (59)
dt—B0+R di R()+ Bg +2b Vxb

0 1
+8—u<1/)1+¢2>*2—BO[V'Eo*bb-VEo] (60)

du w?

Bl = 61
g =0 TR (61)
Bf =V x (Ag+ub+D), (62)

D? ob 0D
T = _ - 2= 2=
E'=E)-V |uBy+ B + (1 +1h2) uat o (63)
The modified field3" andE' can be viewed as those generated by a modified potefitiad (¢f, A1),
D2
¢TE¢0+M30+7+<¢1 +a) (64)
AT=Ag+ub+D, (65)
AT

BT:VXAT,ET:ngZ)T—%. (66)

In the right hand sides of Eqgs. (58)-(66), every field is extdd at the gyrocenter coordingfeand can depend on

t. Note that in Eq. (58) the curvature drift is hidden in the fiestn on the right hand side. The second term is the
Banos drift [33]. The last term is the generaliZzéck B drift that contains the gradiel® drift along with several
other terms, such as the space-time inhomogeneiti&s ofvhich also induces croB-drift. The requirement
0v/06 = 0 does not uniquely determine the coordinate perturbati@nd the gauge functiofi, and therefore
the gyrocenter coordinates. There are freedoms in defihmgeroth order gyrocenter coordinates as well. For
example, in Ref. [34], a different definition of the zerotider gyrocenter coordinates are used, which results
in more terms in the expression for. We will call the freedoms in selecting the gyrocenter cooaties gyro-
center gauges. In Eq. (44}, andR, aref-independent, even thougtandc aref-dependent. LeR = (R, R),

X = (t,X),andV = (—-9/0t, V). They in Eq. (40) is invariant under the following group of transftion

R— R +ViX), 0 —0+6X). (67)

Apparently, this is a gauge group associated how the gysmthss measured. Naturally, an appropriate name
for this gauge would be gyro-gauge.

4 Pullback transformation of the distribution function

Even though they in Eq. (40) is gyro-gauge invariant, it does not need to bdfeBint gyro-center gauges can
be chosen such thatis not gyro-gauge invariant. The gyrocenter coordinatéesgsonstructed is just a useful
coordinate system for physics, but not the physics itsé¢ltah depend on the gauges (freedoms) we choose,
as long as it is useful. Gyrocenter coordinate system andyhakinetic equation are not the total of physics
under investigation. What is gauge invariant is the systégymkinetic equation and the gyrokinetic Maxwell
equations. The key element which makes this gyrokinetitegygauge invariant is the pullback transformation
of the distribution function associated with the gyrocewctordinate system. Kinetic theory deals with particle
distribution functionf, which is a function defined on the phase sp&¢¢ : P — R. To complete the equation
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system, the familiar density and momentum velocity inttsygee needed for Maxwell’'s equationsa&e M.
@) = [ e,

wherej(z) = [—n(z),j(x)] is the spacetime flux and = [—1,v]. In gyrokinetic theory, however, thX
coordinates in the gyrocenter coordinate system are notlcwies for spacetime. The gyrocenter transformation
g : z — Z does not preserve the coordinatefor the spacetimé/. However, no matter which coordinate
system is used, the moment integrals are still defined at ea€lor the new coordinate systefto be useful,

it is necessary to know the constructionjgk) in it. To be specific, the current scenario is that the distribution
function f is known in the transformed coordinate systénas F'(Z). Given F(Z), we need to pull back the
distribution functionF'(Z) into f(z),

f(z)=g"[F(2)] = F(9(2)). (68)
Considering the asymptotic nature of the construction efgyrocenter transformatian
g=g20Gq1°90, go:2+—2Z , goog1: Z— Z, (69)

we have the following pull-back transformation

f(z2)=g"F(Z) =g§ ogi ogs F(Z) = g5F [92(91(Z))]

=gs {F(Z) +G1-VF(Z) + % (G1-V)*F(Z)+ Gy - VF(Z) + 0(53)]

= [F(Z)+G1-VF(Z)+ % (G1-V)? F(Z)+G2-VF(Z)] +0(e?) . (70)
Z—go(z)
In Eqg. (70), the pullbacks associated withand g, are treated perturbatively, consistent with the pertiwbat
nature ofg; andg.. However, at this stage there is no asymptotic expansiorméoptillback associated witf,
becausgy is not a perturbative coordinate transformation. The irtgpare of the pullback transformation can’t
be over-emphasized. Without this vital element, many irtgydrphysics will be lost in the gyrokinetic theory.
We will discuss the physics of the pullback transformatiothie next section.

5 General gyrokinetic Vlasov-Maxwell equations

After constructing the gyrocenter coordinates and thessponding pullback transformation, we are ready to cast
the Vlasov-Maxwell equations in the gyrocenter coordiaateobtain the general gyrokinetic Vlasov-Maxwell
equations. The gyrokinetic Vlasov equation is simply thasdv equatiorf () = 0 in the gyrocenter coordi-
natesZ, which is explicitly

az, oF _

= <j<6).

@ 0z, 0 0=7=6) (71)
Because

0 (dZ

@(@>—0’ (72)
the gyrokinetic equation can be easily split into two parts

F=(F)+F, (73)

O(F)y dX dud (F)

OF  dX ~  dudF dOOF

o Ta YV  an T (75)
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wheredX/dt, du/dt, anddf/dt are given by Eqgs. (58)-(60). The gyrokinetic Maxwell’s etjoracan be written
as

VA _4772%/[ )+ Gy - VF(Z)+%(G1-V)QF(Z)JFGQ-VF(Z)] vd*v, (76)

ZHQQ(Z)

Vip=—dr> qs/ [F(Z) + Gy -VF(Z) + % (G1-V)*F(Z)+ Gy - VF(Z)} By . (77)

Z-’Qo(z)

We emphasize that Eqgs. (76) and (77) are not new equatiorchwbntain different physics than the original
Maxwell’s equations with moment integrals. The more appgedp hame for this equation should be “Maxwell’s
equations with pulled-back distribution from the gyroemdoordinates”.

The spirit of the general gyrokinetic theory is to decouple gyro-phase dynamics from the rest of particle
dynamics by finding the gyro-symmetry, instead of “averggiit’ the “fast gyro-motion”. This objective is
accomplished by asymptotically constructing a good comidi system using the Lie coordinate perturbation
method enabled by the geometric nature of the phase spaaenity; The general gyrokinetic Vlasov-Maxwell
equations are not developed as a new set of equations, het & the Vlasov-Maxwell equations in the gyro-
center coordinates. Because the general gyrokineticraydéeloped is geometrically the same as the Vlasov-
Maxwell equations, all the coordinate independent pragedf the Vlasov-Maxwell equations, such as energy
conservation, momentum conservation and phase space @@anservation, are automatically carried over to
the general gyrokinetic system.

The gyrophase dependeﬂk:an be decoupled from the system. Lettiﬁgb 0, Egs. (74), (76), and (77) form
a close system fofF) andA = (—¢, A). We note thatF' = 0 does not imply thaif = 0. The distribution
function f in the laboratory coordinates becomes gyrophase depetigengh the pullback transformation (70)
andG. Indeed, the pullback transformation contains significambant of important physics.

The most famous example is the “polarization drift denditythe gyrokinetic Poisson equation [12,27], which
has played an important role in the development of gyrolkér@tulation methods using explicit algorithm
[35-42]. It is interesting to note that a term almost the saxists in the Poisson equation for the implicit
algorithm [43]. However, the interpretation of this terntlire context of implicit algorithm is algorithmic. This
a example of the consistency between elegant theories foi@tf algorithms. From the viewpoint of modern
gyrokinetic theory, the “polarization drift density” cae bigorously derived from the first principles in the most
general form. Actually, it is just one of the many terms thapear naturally in the pullback transformation.
To illustrate the importance and the basic feature of thébpak transformation for edge plasmas, we carry out
the pullback transformation in the gyrokinetic Poissonagiun up to the first order of the gyrocenter coordinate
perturbation for low frequency, electrostatic physicsadidition, we will take a sub-ordering for edge plasmas to
keep only the weak inhomogeneities associated ®itin the pullback transformation. Under these assumptions,
the gauge functios; can be solved for as

2

S = -(VD-¢) xb— b VD - c+/¢>1d9+ ——VD -ac, (78)

B3 432

from which we can calculate the first order pullback transfationG, - VI (Z) . After some detailed calculation,
the Poisson equation (in unnormalized units) can be rediaced

V2p(x) = =47 Y g [N + Ny, + Ny,] , (79)
N(x) = / 2w dwdu Iy (pV 1) F (x,w,u) , (80)
Ny, (x) = (;2 (ere1 +ezeq) : V [n(x) (D +V (x)b) . VD} , (81)
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o'} . 2 A
Ny, (x) = ——¢1(x) 2 (Z.Q!;g (Z—Q%) Mai—2(x) (82)
= 2(i44) (V2 v2 1\’
*%”Z_O T <W> lMQ“”’ 20 <4_QL%) ‘bl(X)] ’
_ > 1 Vz ’LU2 ‘ _ qBO

Io(pm):;(i?(&%) » Q=" (83)
n(x) = /QﬂwdwduF(x,w,u) , (84)
Vi(x) = %/Qﬂ'wdwduF(x,w,u) , (85)
M;(x) = /wadwdu w'F (x,w,u) . (86)

Here,e; ande, are two perpendicular directions(x), V) (x), and M, (x) are moments calculated frof(7),
which is the total distribution function. All quantitieseaevaluated at particle coordinatesObviously, Ny, (x)

is the leading order pullback associated with the inhomedies of the background electric field, which capture
the important physics of gyro-orbit squeezing effect duthlargeE, shearing in the edge regioiNy, (x) is
pullback associated with the short wavelength small angditfluctuation. When the scale-lengthyafis bigger
than the gyroradius, it is valid to keep the leading ordehebe terms,

Ny, (x) = miﬂg (Vin-Vigi+nVie) +0 (p'vh) = mLQgVL (nVié)+ 0 (FVY) . (87)

which is the “polarization drift density”. When the scatnbth of$; is comparable to the gyroradius, which
is often the case for edge plasmas, all the terms on the rayid kide of Eq. (82) need to be kept for the finite
Larmour radius effect. The “polarization drift density”alid be replaced by the more general expression in
Eq. (82), systematically derived from the pullback transfation. Sosenket al [23] discussed the possibility of
including the polarization drift due t0, in the gyrocenter dynamics rather than in the Poisson emjuati

If we ignore the spatial variation of the momets, (x) associated with the total distribution functiét{7),
the expression folN,, can be simplified into

oo i . 2 i+J
N = L3 2000 o) (%) 1) (88)

m ,j=0 (ZU')

[ 277/ 12 (pVy) dwdu—QW/F[wzo]du} %@(x).

If we further assumé’ is Maxwellian in the transverse direction,

1 2 w?
() oo (o) B ©9
with
“+oo
/_ Fy(u)du =1, (90)
then
Niy() = 5 e o(®) = 1] 61(0) (O1)
v2V?2
b= tQ{ (92)
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Finally, we need to separate the long wavelength, largeituidpl component ofV (x) from the short wave-
length, small amplitude component,

N (x) = No (x) + N (%) , (93)

where Ny (x) is the long wavelength, large amplitude component ARdx) is the short wavelength, small
amplitude component. The gyrokinetic Poisson equatiolmda split into

V2go(x) = —4m Y ¢ No (94)

V2¢1(x):—47r2q5 [N1+ Ng, + Ng,] - (95)

S

The pullback transformation in Ampere’s law is equally impot. Many more physics, which were previously
thoughtto be incompatible with the gyrokinetic theory,&aeen included into the gyrokinetic theory by applying
the pullback transformation. For example, it has been shtbangyrokinetic theory can describe all the plasma
waves in magnetized plasmas, including the high frequegiclotton waves and compressional Alfvén wave
[22].
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